Loading AI tools
aus Kohlenstoff bestehende Röhren mit Durchmessern im Nanometerbereich Aus Wikipedia, der freien Enzyklopädie
Kohlenstoffnanoröhren, auch CNT (englisch carbon nanotubes) genannt, sind aus Kohlenstoff bestehende Röhren (molekulare Nanoröhren) mit Durchmessern im Nanometerbereich.
Sie sind aus wabenartigen Gittern von Kohlenstoffatomen, ähnlich der Struktur von Graphen oder den Fullerenen, aufgebaut. Die Struktur wird dabei durch die sp2-Hybridisierung der Kohlenstoffatome vorgegeben. Der Durchmesser der Röhren liegt meist im Bereich von 1 bis 50 nm, es wurden aber auch Röhren mit nur 0,4 nm Durchmesser hergestellt. Längen von bis zu einem halben Meter für einzelne Röhren und bis zu 20 cm für Röhrenbündel wurden bereits erreicht.[1][2]
Man unterscheidet zwischen ein- oder mehrwandigen und offenen oder geschlossenen Röhren (mit einem Deckel, der einen Ausschnitt aus einer Fullerenstruktur hat), sowie zwischen leeren und gefüllten Röhren (beispielsweise mit Fullerenen).[3]
Je nach Detail der Struktur ist die elektrische Leitfähigkeit innerhalb der Röhre metallisch oder halbleitend; es sind auch Kohlenstoffröhren bekannt, die bei tiefen Temperaturen supraleitend sind. Transistoren und einfache Schaltungen wurden bereits mit den halbleitenden Kohlenstoffnanoröhren hergestellt. Die Forschung sucht nach Möglichkeiten, komplexe elektrische Schaltungen aus verschiedenen Kohlenstoffnanoröhren gezielt herzustellen. Ein freitragender, einwandiger CNT (SWCNT) hat einen Durchmesser zwischen 0,4 nm[4] und 6 nm und eine variable Länge von bis zu mehreren Mikrometern.
Einwandige CNTs haben eine Dichte von 1,3 bis 1,4 g/cm³, mehrwandige CNTs (MWCNT) von 1,8 g/cm³[5] und eine Zugfestigkeit von 30 GPa bei einwandiger und bis zu 63 GPa bei mehrwandiger Ausführung.[6][7] Stahl im Vergleich hat eine Dichte von rund 7,85 g/cm³ und eine maximale Zugfestigkeit von 2 GPa. Daraus ergibt sich für mehrwandige CNTs rechnerisch ein ca. 135-mal so gutes Verhältnis von Zugfestigkeit zu Dichte (Reißlänge) wie für Stahl. Solche Rechenbeispiele sind jedoch nur rein theoretischer Natur – beispielsweise für einen Weltraumlift. In der Praxis ist ein Vergleich mit einer Kohlenstofffaser oder einer Stahlfaser sinnvoller, da ähnliche Mechanismen (Größeneffekt, Orientierung) die Zugfestigkeit erhöhen. Der Elastizitätsmodul liegt bei bis zu 1 TPa. Stahl besitzt im Vergleich einen Elastizitätsmodul von 210 GPa. Dies gilt jedoch nur für relativ kleine Abschnitte von Kohlenstoffnanoröhren (wenige mm).
Für die Elektronikindustrie sind vor allem die Strombelastbarkeit und die Wärmeleitfähigkeit interessant: Erstere beträgt schätzungsweise das tausendfache der Belastbarkeit von Kupferdrähten. Letztere ist bei Raumtemperatur mit 6000 W/(m·K) mehr als 2,5-mal so hoch wie die von natürlichem Diamant mit 2190 W/(m·K),[8] dem besten natürlich vorkommenden Wärmeleiter. Da CNTs auch Halbleiter sein können, lassen sich aus ihnen Transistoren fertigen, die höhere Spannungen und Temperaturen als Siliciumtransistoren aushalten. Erste experimentelle, funktionsfähige Transistoren aus CNTs wurden bereits hergestellt.
Bisher sind bis auf wenige Nischen noch keine Anwendungen für Nanoröhren in der industriellen Produktion beziehungsweise in marktreifen Produkten. Allerdings sind theoretische Einsatzgebiete für das sogenannte Buckypapier erforscht/denkbar. In der universitären und industriellen Forschung werden verschiedene Applikationen entwickelt.
Für Transistoren aus Nanoröhren wird die halbleitende Eigenschaft bestimmter Nanoröhren ausgenutzt. An jedem Ende der Röhre befindet sich eine Elektrode (Source/Drain). Um die Röhre herum ist die Steuerelektrode des Transistors angeordnet. Bei prinzipiell gleicher Funktionsweise wie die eines Metall-Oxid-Halbleiter-Feldeffekttransistors (MOSFETs) erhofft man sich bessere Leistung. Feldeffekttransistoren mit Nanoröhren-Technologie werden als Kohlenstoff-Nanoröhren-Feldeffekttransistor (CNTFET) bezeichnet.
Mit Hilfe von CNTs können nichtflüchtige Datenspeicher realisiert werden. Dabei werden die Nanoröhren zwischen zwei Elektroden angeordnet. Ein elektrisches Feld zwischen den beiden Elektroden lässt die Nanoröhre sich bleibend zusammenziehen oder strecken. Im gestreckten Zustand stellt sie einen elektrischen Kontakt zu einer Substratelektrode dar und ermöglicht so einen Stromfluss. Laborversuche zeigen Schaltzeiten im Bereich von SRAM-Geschwindigkeiten.
Abgesehen von diesen Speichern, bei denen die Nanoröhre das Wirkprinzip realisiert, wird auch die Realisierung der Kapazität bei konventionellen DRAMs durch CNTs erforscht.
Es lassen sich Felder von parallel aufgestellten Nanoröhren herstellen. Die prinzipielle Eignung als Bauteil für flache und selbstleuchtende Feldemissionsbildschirme wurde bereits demonstriert. Dabei dienen die scharfen Spitzen der Nanoröhren als Quelle für Elektronen durch Feldemission (winzige Elektronenkanone, Kaltkathode schon bei relativ geringen Spannungen), die wie bei einem herkömmlichen Fernsehgerät gegen einen Leuchtschirm beschleunigt werden.
CNTs werden auch als Spitzen für leistungsfähige Rastertunnelmikroskope (RTM) verwendet, die bereits im Handel verfügbar sind und gegenüber konventionellen RTM die Auflösung um den Faktor 10 verbessern.
Nanoröhren werden mit herkömmlichem Kunststoffen gemischt, wodurch die mechanischen Eigenschaften der Kunststoffe verbessert werden. So konnte beispielsweise in Zugversuchen an einem Komposit aus Polyethylen und CNT bei einem CNT-Anteil von 1 % eine Verstärkung um 25 % gegenüber dem homopolymeren Polyethylen gemessen werden.[9] Völkl lieferte eine erste Serie von 60.000 Tennisschlägern aus diesem Komposit aus.
Außerdem ist es möglich, elektrisch leitende Kunststoffe herzustellen. Forschungsarbeiten am Leibniz-Institut für Polymerforschung Dresden zeigen, dass die Zugabe von nur 0,04 % CNT ausreicht, um einen Kunststoff elektrisch leitfähig zu machen.[10] Damit sind CNT herkömmlichen Leitfähigkeitsrußen in diesem Punkt überlegen.
Bei der Herstellung von Faserverbundwerkstoffen werden Nanoröhren auf den Fasern gezüchtet, um deren Anbindung an das umgebende Harz, die Matrix, zu verbessern. Daraus resultieren erhebliche Verbesserungen der mechanischen Eigenschaften.
Lockheed Martin verwendet für das Tarnkappen-Mehrzweckkampfflugzeug F-35 Nanoröhren, um das Gewicht zu reduzieren.[11] Um die Testphase für die Maschine nicht zu stark zu verlängern, wurden diese nur bei Teilen verwendet, die nicht oder nur wenig belastet werden. Hier kann die Zulassung neuer Techniken schneller erreicht werden.
Durch den Einschluss von Paraffin in einzelne Kohlenstoff-Nanoröhren (CNTs) kann ein Nanogarn aus Kohlenstoffnanoröhren hohe Gewichte tragen. Die gefüllten Nanoröhren werden zu einem geraden Garn oder zu einem gedrehten Garn gewickelt. Sie haben beide unterschiedliche Nutzanwendungen; der Antrieb ist der gleiche. Das Paraffin schmilzt beim Erhitzen und dehnt die Nanoröhre in ihrer Breite aus. Dadurch wird das Volumen der Nanoröhre erhöht und sie verkürzt sich. Für diesen Reaktionsablauf benötigt die Nanoröhre nur 40 Mikrosekunden. Das betrifft jedoch nur die Nanoröhre. Ob sich ein Schmelz-/Abkühlungszyklus in einer entsprechenden Geschwindigkeit realisieren lässt, bedarf (insbesondere bei ausgedehnteren Strukturen) der Untersuchung (Stand 2012). Eine rotierende Bewegung wird durch das gedreht gesponnene Garn möglich, indem sich die CNTs ebenso verkürzen. Aufgrund der schnellen Reaktion des Paraffins und der Stabilität des Einbaus in die Kohlenstoffstruktur ist das Garn in der Lage, bis zu 11.500 Umdrehungen pro Minute durchzuführen. Abkühlung bringt das Nanogarn zurück in die Grundposition.
Forscher des Massachusetts Institute of Technology haben eine Batterie konstruiert, die beim Laden Kohlendioxid aus Abgas oder Luft einfängt und beim Entladen wieder abgibt.[12]
Ganze Bündel von Nanoröhren wurden bereits zu Fäden oder Matten verarbeitet, die als Werkstoff verwendet werden sollen. Bündel von Nanoröhren, die in einem Elektrolyt elektrisch aufgeladen werden, können auch als Aktor wirken.[13]
Das Karlsruher Institut für Technologie (KIT) hatte im März 2011 veröffentlicht, dass es einen deutlichen Fortschritt bei der Erstellung von zyklenstabilen Lithiumakkus auf Basis von Kohlenstoffnanoröhrchen verzeichnen konnte.[14] Gegenüber herkömmlichen Lithiumakkus kann eine Verdoppelung der Kapazität erreicht werden.
Einer amerikanischen Forschergruppe ist es gelungen, mit Hilfe von Nanoröhren das derzeit dunkelste Material, Vantablack, herzustellen. Es ist ein Viertel so hell wie die vorherige Schwarzreferenz (0,16 % Reflexion) aus einem Nickel-Phosphor-Gemisch, wobei der Körper noch eine spezielle Oberflächenstruktur hat. Das neue Material, eine Oberfläche, die mit unterschiedlich langen Nanoröhren dicht besetzt ist, reflektiert nur 0,045 % des einfallenden Lichtes.[15] Potenzielle Einsatzbereiche des neuen Materials sind beispielsweise Sonnenkollektoren und die Abschirmung von Funkwellen in einem sehr breiten Frequenzbereich.
In der Halbleitertechnik wird auch der Einsatz von Nanoröhren als elektrisch leitende Verbindung, z. B. in Form von vertikalen Kontakten, erforscht, um damit Elektromigrationsprobleme zu umgehen. Durch die Kombination zweier Nanoröhren verschiedenen Durchmessers und mit unterschiedlichen elektrischen Eigenschaften lassen sich Dioden erzeugen. Man hofft, auf diese Art später ganze Computerschaltungen aus Nanoröhren herstellen zu können.
Forschern des Karlsruher Instituts für Technologie ist es in Zusammenarbeit mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) gelungen, eine Nanoröhre als elektronischen Schalter zu nutzen. Durch Beschuss mit einem Elektronenstrahl lässt sich die Leitfähigkeit einer Nanoröhre lokal auf ein Tausendstel herabsetzen. Ursache dafür sind Quantenpunkte. Der Effekt ist reproduzierbar und reversibel. Der hohe Widerstand lässt sich durch eine hohe Spannung wieder zurücksetzen. Die Nanoröhre wird bei diesem gezielten Ein- und Ausschalten nicht beschädigt.[16]
Einem Forscherteam an der Stanford University, Kalifornien unter der Leitung von Max Shulaker ist es gemäß einem Bericht im Fachmagazin Nature[17] gelungen, einen funktionsfähigen, aus 178 Transistoren bestehenden Computer auf Basis Kohlenstoffnanoröhren zu realisieren. Der Rechner kann einige einfache Zahlenoperationen und einzelne Befehlssätze aus den 1980er Jahren ausführen.[18]
Im Jahre 2014 wurde von Ken Takeuchi, Professor an der Faculty of Science and Engineering der Chuo University in Tokyo, und der Firma Nantero ein 140-nm-Single-Bit-NRAM demonstriert.[19]
Kohlenstoffnanoröhren leiten sich von Graphen (einzelne Graphitschicht) ab, das zu einer Röhre aufgerollt ist: Die Kohlenstoffatome bilden eine wabenartige Struktur mit jeweils drei Bindungspartnern. Röhren mit ideal hexagonaler Struktur haben eine einheitliche Dicke und sind linear; es sind aber auch geknickte oder sich verengende Röhren möglich, die fünfeckige Kohlenstoffringe enthalten. Je nachdem, wie das Wabennetz des Graphits zur Röhre gerollt wird („gerade“ oder „schräg“), entstehen helikale (schraubenartig gewundene) und auch chirale (nicht-spiegelsymmetrische) Strukturen. In der Literatur wird zur Unterscheidung das Indexpaar (n, m) verwendet und zwischen drei Klassen unterschieden. Diese heißen im Englischen armchair (mit (n, n), achiral, helikal), zig-zag ((n,0), achiral, nicht-helikal) und chiral ((n, m), chiral, helikal). Die ersten beiden Namen beziehen sich auf die Form der Linie, die sich ergibt, wenn man den C-C-Bindungen entlang des Umfangs folgt.[20]
Mit dem Indexpaar lässt sich auch die elektrische Leitfähigkeit bestimmen. Wenn eine ganze Zahl ist, ist die Kohlenstoffnanoröhre elektrisch leitend, ansonsten halbleitend. Somit ist ein Drittel aller denkbarer Röhren leitend, zu denen z. B. auch alle armchair-CNTs zählen.
In den 1970er Jahren synthetisierte Morinobu Endo Kohlenstoffnanoröhren, konnte sie jedoch nicht beobachten und benannte sie auch nicht, machte sie aber für die Medizin als Filter nutzbar. 1987 wurde von Karsten Pietsch ein Lichtbogenverfahren zur Metallbeschichtung entwickelt; erst im Nachhinein wurde festgestellt, dass diese Beschichtung aus parallel gewachsenen, einwandigen Kohlenstoffnanoröhren besteht. Mehrwandige Kohlenstoffnanoröhren (auch MWNTs, engl. multi-walled nanotubes) wurden 1991 von Sumio Iijima mit einem Elektronenmikroskop zufällig entdeckt, nachdem er eine Lichtbogenentladung zwischen Kohlenstoffelektroden erzeugt hatte. Erst 1993 wurden die einwandigen Kohlenstoffnanoröhren entdeckt. Sie können ebenfalls im Lichtbogen hergestellt werden, wenn man Katalysatoren zusetzt. 1996 veröffentlichte der Nobelpreisträger Richard E. Smalley ein Laserverfahren zur Herstellung von einwandigen Kohlenstoffnanoröhren (auch SWNTs, engl. single-walled nanotubes), bei dem Graphit mit einem Laser abgetragen („verdampft“) wird. Außerdem entstehen Nanoröhren bei der katalytischen Zersetzung von Kohlenwasserstoffen. Mit diesem CVD-Verfahren (Chemical Vapor Deposition) kann man ganze Felder von weitgehend parallelen Röhren auf einem Substrat aufwachsen lassen. Jedes der drei Verfahren (Lichtbogen, Laser, CVD) ist inzwischen so weit entwickelt, dass damit größere Mengen gleichmäßiger (in Durchmesser, Länge, Defekte, Mehrwandigkeit) CNTs hergestellt werden können. Fertige Kohlenstoffnanoröhren können heutzutage von verschiedenen Herstellern in Gramm-Mengen erworben werden.
Nanoskalige Metallkatalysatoren sind wichtige Bestandteile vieler effizienter Syntheseverfahren für CNTs, speziell der CVD-Synthese. Sie erlauben zudem ein gewisses Maß an Kontrolle über die Struktur und Chiralität der gebildeten CNTs.[21] Während der Synthese können Katalysatoren kohlenstoffhaltige Verbindungen in röhrenförmigen Kohlenstoff verwandeln, werden dabei in der Regel jedoch auch selbst von teilgraphitischen Kohlenstoffschichten verkapselt. Auf diese Weise können sie zu einem Bestandteil des resultierenden CNT-Produkts werden.[22] Derartige metallische Verunreinigungen können jedoch für viele Anwendungen von CNTs problematisch sein. Katalysatormetalle wie Nickel, Kobalt oder Yttrium können beispielsweise toxikologisch bedenklich sein.[23] Während unverkapselte Katalysatormetalle verhältnismäßig einfach mit Mineralsäuren ausgewaschen werden können, erfordern mit Kohlenstoff verkapselte Katalysatorpartikel einen vorgeschalteten oxidativen Verfahrensschritt zum Öffnen ihrer Kohlenstoffhülle.[24] Eine effektive Entfernung von Katalysatoren, speziell verkapselten, unter Erhalt der CNT-Struktur, stellt daher in der Regel eine verfahrenstechnische Herausforderung dar. Sie wurde für viele CNT-Qualitäten untersucht und individuell optimiert.[25][26] Ein neuer Ansatz, solche Verkapselungen aufzubrechen und metallhaltige Katalysatoren zu verdampfen, besteht in einer extrem schnellen Erhitzung von CNTs und ihren Verunreinigungen in einem thermischen Plasmastrahl.[27]
Bisher noch nicht ausreichend erforscht sind gesundheitsschädigende, sogenannte nanotoxische Effekte, die im Zusammenhang mit Kohlenstoffnanoröhren auftreten können.[28] Eine Argumentation weist auf die längliche räumliche Struktur hin, die der von Asbest ähnelt.[29][30] Des Weiteren zeigen Tierversuche unterschiedliche Ergebnisse, insbesondere in Bezug auf Entzündungsreaktionen im Lungengewebe von Mäusen. Eine neuere Studie hat insbesondere die Aktivierung und Weiterleitung von entzündlichen Signalen durch mehrwandige Kohlenstoffnanoröhren über den Siglec-14-DAP12-Syk-Signalweg und die Möglichkeiten ihrer pharmakologischen Kontrolle aufgezeigt.[31] In neueren Arbeiten zu den toxischen Wirkungen von Kohlenstoffnanoröhren finden die bei der Synthese verbleibenden metallischen Rückstände (Cobalt, Nickel, Molybdän und Eisen) aus dem Katalysator immer mehr Beachtung. Akut toxische Reaktionen gehen vermutlich auf diese Verunreinigungen zurück. Aufgereinigte Präparationen von CNTs zeigen keine akuten toxischen Effekte. Durch Zusätze von verzweigten „Antennen“ mit Carboxyl(-COO–)-Gruppen auf den Fullerenen (zu dessen Unterarten auch Kohlenstoffnanoröhren gehören) werden hydrophile Fullerene geschaffen, die nervenzellschützend wirken sollen. Die Bedingung dafür ist wieder die Reinheit des Fullerens bzw. der Kohlenstoffnanoröhre (keine Metalle, Radikale usw.).[32]
Pathologische Veränderungen, wie etwa die Ausbildung von Wucherungen in der Lunge, scheinen jedoch von CNTs ausgelöst zu werden, was ihnen ein schädliches Potenzial bescheinigt.
Eine interessante Entdeckung betrifft die Interaktion von Kohlenstoffbasierten Nanomaterialien, einschließlich einwandiger Kohlenstoffnanoröhren, mit der Darmmikrobiota. Eine Studie hat gezeigt, dass diese Nanomaterialien von der Darmmikrobiota von Mäusen fermentiert werden können, wodurch anorganischer Kohlenstoff aus den CNTs in organische Butyrat umgewandelt wird. Diese Interaktion könnte Auswirkungen auf die Funktion (Proliferation und Differenzierung) von Darmstammzellen haben.[33]
Von Januar 2010 bis 2013 betrieb die Bayer AG die weltgrößte Pilot-Produktionsanlage für Kohlenstoff-Nanoröhren mit einer Kapazität von 200 Tonnen pro Jahr.[34][35]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.