Remove ads
topologische Invariante Aus Wikipedia, der freien Enzyklopädie
In der Topologie ist das Geschlecht einer kompakten orientierbaren Fläche die Anzahl der „Löcher“ (oder der „Henkel“) der Fläche. Die Bezeichnung und die Definition gehen auf Alfred Clebsch zurück.
Das Geschlecht ist eine topologische Invariante. Der Klassifikationssatz für Flächen besagt, dass geschlossene orientierbare Flächen bis auf Homöomorphie durch ihr Geschlecht klassifiziert werden.
Das Geschlecht einer Fläche ist definiert als die maximale Anzahl von möglichen Schnitten entlang disjunkter, einfach geschlossener Kurven, so dass die Fläche nach dem Schnittvorgang, also nach allen gemachten Schnitten, immer noch zusammenhängend ist.
Bernhard Riemann befasste sich schon 1857 mit „Löchern“ in Flächen. Er nannte diese Größe Klassenzahl. Der Begriff Geschlecht wurde 1864 durch Alfred Clebsch eingeführt.[1]
Die Kugeloberfläche hat das Geschlecht 0, da sie keine Löcher hat, bzw. jeder Schnitt sie in zwei nichtzusammenhängende Teile teilt.
Die Torusfläche hat das Geschlecht 1.
Die Euler-Charakteristik und das Geschlecht hängen für orientierbare, geschlossene Flächen wie folgt zusammen:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.