Remove ads
Teilgebiet der kommutativen Algebra Aus Wikipedia, der freien Enzyklopädie
Im mathematischen Teilgebiet der kommutativen Algebra ist der Begriff eines ganzen Elementes in einer Ringerweiterung eine Verallgemeinerung des Begriffes eines algebraischen Elementes in einer Körpererweiterung.
Es sei ein Ring und eine -Algebra. Dann heißt ein Element ganz über , wenn es ein Polynom mit Leitkoeffizient 1 gibt, so dass gilt, also wenn es ein und Koeffizienten gibt mit
Die Menge der über ganzen Elemente von heißt der ganze Abschluss von in .
Falls der ganze Abschluss von in mit übereinstimmt, heißt ganz abgeschlossen in . Stimmt der ganze Abschluss von in jedoch mit überein, ist also jedes Element von ganz über , so heißt ganz über .
Sei eine Ringerweiterung, . Dann sind äquivalent:[1]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.