Loading AI tools
unverfestigtes Sediment mit Korngrößen (nach ISO 14688) von 0,063 bis 2 mm Aus Wikipedia, der freien Enzyklopädie
Sand ist ein natürlich vorkommendes, unverfestigtes Sediment, das sich überwiegend aus Mineralkörnern mit einer Korngröße von 0,063 bis 2 Millimeter zusammensetzt. Sand ist also im Mittel gröber als Schluff (Korngröße überwiegend 0,002 bis 0,063 Millimeter) und feiner als Kies (Korngröße überwiegend 2 bis 63 Millimeter). Sand zählt außerdem zu den nicht bindigen Böden.
Die Bezeichnung „Sand“ ist nicht abhängig von der mineralischen Zusammensetzung. Der größte Teil der Sande besteht jedoch mehrheitlich aus Quarzkörnern. Vor allem dieser Quarzsand ist ein bedeutender Rohstoff für das Bauwesen sowie für die Glas- und Halbleiterindustrie.
Das altgerm. Wort mhd., ahd. sant ist verwandt mit griech. ámathos „Sand“; die weiteren Beziehungen sind nicht völlig geklärt.[1]
Der erste Sand der Erdgeschichte entstand aus magmatischen und metamorphen Gesteinen (z. B. Granit oder Gneisen), die durch physikalische Verwitterung in kleinere Blöcke oder, bedingt durch chemische Verwitterung entsprechend anfälliger Gesteinsbestandteile, direkt in einzelne Mineralkörner zerfielen.
Solche Blöcke und Körner werden anfangs durch Schwerkraft, nachfolgend, bei nachlassendem Gefälle, vor allem durch Wasser von ihrem Ursprungsort weg transportiert (Erosion). Durch anhaltenden Wassertransport werden sie mehr oder weniger stark nach Größe und spezifischem Gewicht (abhängig vom Mineral, aus dem sie bestehen) sortiert, indem nach Unterschreiten einer bestimmten Strömungsgeschwindigkeit die größeren Blöcke abgesetzt werden und zurückbleiben und nur noch Körner in Sandgröße und darunter weiter transportiert werden. Auch Wind kann Sand transportieren, hat aber aufgrund der geringeren Dichte von Luft generell eine stärkere Sortierwirkung und braucht überdies höhere Geschwindigkeiten. Sobald sich die Strömungsgeschwindigkeit des Transportmediums weit genug verringert, setzen sich die Sandkörner ab – das Ergebnis ist ein sandiges Sediment. Dieses kann bei Erhöhung der Strömungsgeschwindigkeit jedoch wieder in Bewegung geraten, also erodiert werden.
Da die innere Oberfläche von Sand größer ist als die eines identischen Volumens gröberer Korngrößen, kann die Verwitterung bei Sand auf größerer Fläche angreifen, sodass einige Minerale, in geologischen Zeiträumen betrachtet, relativ schnell chemisch in Tonminerale umgewandelt oder ganz aufgelöst (z. B. Feldspäte, mafische Minerale oder Karbonate) werden und ihr Anteil an der Gesamtmenge des Sandes im Vergleich zu chemisch resistenteren Mineralen, wie Quarz, deutlich abnimmt.
Durch mechanische Beanspruchung beim Transport ändern sich Form und Größe der Einzelkörner, indem sie entlang der Kristallgrenzflächen gespalten oder indem während des Transports Fragmente herausgebrochen werden. Ecken und Kanten werden umso stärker gerundet und abgeschliffen, je länger der Transportweg ist. Dies ist allerdings kein linearer Prozess: Je runder und kleiner die Körner werden, desto widerstandsfähiger sind sie gegen weitere mechanische Veränderungen. Untersuchungen ergaben, dass häufig ein Transportweg von Tausenden von Kilometern nötig ist, um kantige Sandkörner mittlerer Größe auch nur mäßig zu verrunden.
Beim Transport entlang von Flussläufen können diese Weglängen nur selten erreicht werden, und auch die stetigen Bewegungen in der Brandungszone einer Küste reichen in den meisten Fällen nicht aus, um die heutzutage feststellbare gute Rundung vieler Sandkörner zu erklären, besonders dann nicht, wenn der Sand hauptsächlich aus widerstandsfähigem Quarz besteht. Erklärt wird dies damit, dass der weitaus größte Teil des heute auf der Erde vorkommenden Sandes der Verwitterung von Sandsteinen entstammt und somit schon mehrere Erosions- und Sedimentationszyklen hinter sich hat: Sand wird abgelagert (sedimentiert), überdeckt durch andere Sedimente und dadurch verdichtet. Die Sandkörner werden schließlich während der Diagenese durch ein Bindemittel miteinander verkittet und ein Sandstein entsteht. Wenn ein Sandstein infolge einer tektonischen Hebung wieder an die Erdoberfläche gelangt und dadurch Verwitterung und Erosion ausgesetzt ist, werden die Einzelkörner freipräpariert und beim folgenden Transport wieder ein wenig weiter abgerundet, letztlich abgelagert und es schließt sich ein weiterer Zyklus an. Selbst wenn man eine Zyklusdauer von 200 Millionen Jahren annimmt, so kann ein heutiges, gut gerundetes Quarz-Sandkorn durchaus zehn solcher Zyklen und damit fast die halbe Erdgeschichte durchlaufen haben. Sande als Lockersediment an der Erdoberfläche können immerhin mehr als eine Million Jahre alt sein.[2]
Als Sonderfall ist Sand zu sehen, der aus den Kalkskeletten abgestorbener Meerestiere entstanden ist, beispielsweise aus Muschelschalen oder Korallen. In geologischen Zeiträumen betrachtet ist dieser Sand sehr kurzlebig, da die Einzelkörner während der Diagenese normalerweise so stark verändert werden, dass sie nach einer erneuten Heraushebung und Erosion nicht mehr in ihrer ursprünglichen Form herausgelöst werden können. Zudem verwittert Kalkstein nur in aridem Klima rein physikalisch, ansonsten bevorzugt chemisch, d. h., er wird eher aufgelöst statt in kleine Fragmente zerlegt.
In der Bodenkunde ist Sandboden die grobkörnigste der vier Hauptbodenarten. Die Korngröße Sand, die den Hauptanteil im gleichnamigen Sediment ausmacht, reicht nach der im deutschsprachigen Raum bevorzugten Einteilung nach DIN 4022 von 0,063 bis 2 mm Äquivalentdurchmesser und liegt damit zwischen der Korngröße Schluff (< 0,063 mm) und Kies (> 2 mm). Sand wird weiter unterteilt in:
Sand (S/Sa) | Korngröße |
---|---|
Grobsand (gS/CSa) | 0,63–2 mm |
Mittelsand (mS/MSa) | 0,2–0,63 mm |
Feinsand (fS/FSa) | 0,063–0,2 mm |
In der Praxis findet man jedoch auch davon in gewissem Umfang abweichende Klassengrenzen und Bezeichnungen:
Da für die Bezeichnung Sand nur die Korngröße, nicht aber die mineralische Zusammensetzung ausschlaggebend ist, können Sande vielseitig zusammengesetzt sein. Im weit überwiegenden Anteil der heute auf der Erde vorkommenden Sande dominiert der Anteil von Körnern aus Quarz (SiO2) gegenüber anderen Mineralen (Quarzsande im weiteren Sinn). Grund dafür ist der hohe Anteil von Quarz in den Gesteinen der Erdkruste sowie seine relativ große Härte (7 auf der 10-stufigen Mohs’schen Härteskala), sowie seine Resistenz gegen chemische Verwitterung. Je nach lokaler Geologie und sonstigen Gegebenheiten können jedoch auch Sande ganz anderer mineralischer Zusammensetzung auftreten.
Neben den natürlich vorkommenden Sanden werden auch künstlich hergestellte feine Mineralgranulate als „Sande“ bezeichnet. Dazu zählt unter anderem als Hüttensand bezeichnete gemahlene Hochofenschlacke.
Die mechanischen Eigenschaften eines Sandes werden von der Beschaffenheit (Form, Größe, Material) der Sandkörner bestimmt.
Der Reibungswinkel von Sandkegeln (auch Schüttwinkel bzw. stabiler Hangwinkel genannt) hängt von der inneren Reibung eines Sandes ab, die stark von der Form und der Größenverteilung der Sandkörner beeinflusst wird. Bei natürlichen Sanden mit guter Sortierung oder bei gesiebten Sanden (jeweils geringe Varianz bei den Korngrößen) liegt er im Falle einer allgemein guten Kornrundung bei 30°, im Falle vorwiegend kantiger Körner bei bis zu 35°. Bei schlecht sortierten Sanden (hohe Varianz bei den Korngrößen) mit dichter Kornpackung (kleinere Körner liegen in Zwischenräumen größerer Körner) kann der Schüttwinkel noch darüber liegen.
Die Rohdichte (das Raumgewicht) eines trockenen Sandes γt ergibt sich aus der mittleren Dichte der Sandkörner γs und dem Anteil des Porenvolumens (Kornzwischenraumvolumens) am Gesamtvolumen n nach der Formel
In Mitteleuropa haben Sande ihren Ursprung nicht selten in quarz- und feldspatreichen Kristallingesteinen wie Granit und Gneis, zumeist aber in (Quarz-)Sandsteinen. Die Körner typischer mitteleuropäischer Sande haben somit eine mittlere Dichte, die ungefähr der von Quarz entspricht (2,6 g/cm³). Für einen Sand mit einem nicht unüblichen Porenvolumen von rund 40 % ergibt sich somit ein Raumgewicht von rund 1,6 g/cm³. Bei wassergesättigten Sanden ist die Dichte des Wassers ρH2O (≈ 1 g/cm³) zu berücksichtigen. Die entsprechende Formel lautet
Damit ergibt sich für einen typischen mitteleuropäischen Sand mit einem Porenvolumen von rund 40 % bei Wassersättigung ein Raumgewicht von rund 2,0 g/cm³. Generell zu beachten ist, dass auch hier die Kornsortierung, d. h. die Breite des Korngrößenspektrums, einen Einfluss hat, denn je größer die Varianz in der Korngrößenverteilung, desto kleiner der Porenraum und desto größer folglich das Raumgewicht.
Die Wärmeleitfähigkeit von Sand hängt, wie u. a. auch die anderer Lockersedimente bzw. Bodenarten, im Wesentlichen von drei Faktoren ab: von der mittleren Wärmeleitfähigkeit des Kornmaterials, z. B. Quarz ≈ 8,0 W/(m·K), vom Porenraumvolumen und vom Wassergehalt im Porenraum (Wassersättigung). So nimmt bei jeweils gleicher mineralischer Zusammensetzung bei trockenem Sand die Wärmeleitfähigkeit mit abnehmendem Porenraumvolumen (zunehmender Kornpackungsdichte) aufgrund der größeren Gesamtkontaktfläche der Körner zu. Noch stärker nimmt die Wärmeleitfähigkeit mit dem Wassersättigungsgrad zu, da Wasser mit 0,6 W/(m·K) ein besserer Wärmeleiter als Luft mit 0,03 W/(m·K) ist. Typische Werte für die Wärmeleitfähigkeit von trockenem Quarzsand(boden) sind 0,3 W/(m·K) (Porenraumvolumen/Festkörpervolumen ≈ 1) bis 0,6 W/(m·K) (Porenraumvolumen/Festkörpervolumen ≈ 0,5). Bei einem Wassersättigungsgrad von 100 % kann der Wert eines geringporösen Sandes bzw. Sandbodens knapp 3,0 W/(m·K) betragen.[4]
Sand, und in diesem Zusammenhang bezieht sich die Bezeichnung vor allem auf Quarzsand, kommt in mehr oder weniger großer Konzentration überall auf der Erdoberfläche vor. Es gibt jedoch deutliche Unterschiede in der Größe der Vorkommen, die durch Faktoren wie Ausgangsgestein, Klima, regionale und lokale geologische Gegebenheiten, Relief und Transportmedium bedingt sind. Sand ist ein Sediment und findet sich daher vor allem in Sedimentbecken. Im Hochgebirge, einem ausgesprochenen Erosionsgebiet, ist Sand daher nur vereinzelt zu finden, vor allem in Moränen von Talgletschern und in den Ablagerungen der Fließgewässer. Im Mittelgebirge, aber überwiegend in Tiefebenen werden hingegen große Mengen Sand von mäandrierenden Flüssen transportiert und sedimentiert. Auch am Grund von Seen gibt es teils mächtige Sandablagerungen, insofern dort größere Flüsse einmünden. Von Sandbänken und Überschwemmungsflächen kann feiner Sand ausgeblasen und über weite Strecken transportiert werden (äolischer Transport), wie überhaupt das Fehlen einer geschlossenen Vegetationsdecke das Angreifen des Windes begünstigt. So ist für viele Menschen der Begriff „Wüste“ mit dem Bild von Dünen verbunden, und tatsächlich sind große Teile der Sahara und der Namib sowie die westasiatischen Wüsten als sog. Sandwüsten von Sand geprägt (wenn er auch nicht immer in Form von Dünen auftritt). In den kalten Klimazonen sind weite Sandflächen in der Umgebung von Vorlandgletschern und Inlandeis zu finden, die man als Sander bezeichnet. Die Schmelzwässer der Inlandeisschilde der letzten Eiszeiten sind beispielsweise verantwortlich für den Sandreichtum Norddeutschlands und insbesondere Brandenburgs. Nennenswerte Sandablagerungen gibt es auch, wo Flüsse unter Bildung eines Deltas ins Meer münden. Der Sand wird dann durch küstenparallele Strömungen weiterverteilt und tritt an Flachküsten als Strand und Sandbank in Erscheinung. Bei Stürmen wird dieser Sand aufgewühlt und von den Küstenbereichen weg transportiert. So werden durch Flüsse, Strömungen und Stürme große Mengen Sand auf den Kontinentalschelfen abgelagert, von wo aus Teile durch Suspensionsströme bis in die Randbereiche der Tiefsee-Ebenen gelangen.
Generell lässt sich auch sagen, dass es dort besonders große Sandvorkommen gibt, wo Sandstein an der Erdoberfläche ansteht und somit als Ausgangsmaterial dienen kann. In Gebieten, in denen der Untergrund überwiegend aus Kalkstein besteht, und in denen humides Klima herrscht, dominiert hingegen chemische Verwitterung: Das Gestein wird eher aufgelöst als zerkleinert und das Gelände weist den typischen Formenschatz des Karstes auf. Kalksand hat unter diesen Bedingungen aufgrund seines großen Oberfläche-Volumen-Verhältnisses nur eine geringe Lebensdauer. So lässt sich beispielsweise die weitgehende Abwesenheit von Sandstränden an der kroatischen Küste erklären, denn sowohl an der Küste selbst als auch in weiten Gebieten des Landesinneren beißen ausschließlich karbonatische Gesteine aus (dinarischer Karst). Weiterhin spielt die chemische Verwitterung auch in den kontinentalen, immerfeuchten Tropen eine bedeutende Rolle, und auch hier sind aus diesem Grund größere Sandvorkommen eher selten.
Durch Wind bewegter Sand und andere feinkörnige Sedimente können nach dem Prinzip des Sandstrahlgebläses an Felsformationen Korrasion (Windschliff, Winderosion) bewirken und charakteristische, mitunter bizarre Erosionsformen, beispielsweise Windkanter, Pilzfelsen oder Yardangs, herausbilden.
Reine Sandböden bestehen in Mitteleuropa, wie fast überall auf der Welt, zum allergrößten Teil aus Quarzkörnern. Die durch Sandböden gekennzeichneten Tiefländer Nordmitteleuropas werden auch als Geest bezeichnet. Sie sind das Resultat pleistozäner Sandablagerungen. In Mittel- und Süddeutschland bestehen Sandbodenlandschaften vor allem in Gegenden, in denen die Sand-, Schluff- und Tonsteine der Buntsandstein-Serie großflächig ausbeißen.
Quarzsandböden gehören zu den am wenigsten fruchtbaren Bodenarten, da Minerale, die bei ihrer Verwitterung Nährstoffe freisetzen bzw. speichern können, in solchen Böden kaum zur Verfügung stehen. Auch versickert Wasser relativ schnell in dem relativ grobporigen Substrat und Nährstoffe werden rasch ausgewaschen. Als Boden entwickeln sich bevorzugt Podsole oder podsolige Braunerden. Die Sandbodenlandschaften Mitteleuropas sind jedoch nicht vergleichbar mit den relativ kahlen und vermeintlich toten Wüsten Afrikas oder Australiens. Da hierzulande ausreichend Wasser vorhanden ist, werden offene Sandflächen relativ zügig von Pionierpflanzen, wie dem Strandhafer (Ammophila spp.), der Sandsegge (Carex arenaria), dem Silbergras (Corynephorus canescens) und den Quecken (Agropyron spp.) besiedelt. Später folgen u. a. Heidekräuter (Erica spp.), die an die relativ trockenen Standorte sehr gut angepasst sind. Unter natürlichen Bedingungen würden sich letztlich Buchen- oder Eichen-Birken-Mischwälder entwickeln, die zahlreichen Pflanzen und Tieren einen Lebensraum bieten.
In Mitteleuropa existieren aber kaum mehr ursprüngliche Landschaften. Die Sandböden werden forstwirtschaftlich genutzt und tragen meist Kiefernmonokulturen, wie in Brandenburg oder in der Altmark. Die offene Landschaft, z. B. der Lüneburger Heide, ist durch Rodung ehemals vorhandener Wälder entstanden und damit ebenfalls eine Kulturlandschaft.
Da die noch vorhandenen natürlichen Lebensgemeinschaften der Sandlandschaften Mitteleuropas durch den Einfluss des Menschen in ihrem Bestand bedroht sind, werden Maßnahmen getroffen, um sie unter Schutz zu stellen. Ein Beispiel hierfür war der Biotopverbund Sandachse Franken.
Nicht nur im humiden Klima Mitteleuropas dienen Sandlandschaften als Lebensraum. Auch in den eher lebensfeindlichen Sandwüsten Afrikas, Asiens und Australiens leben zahlreiche Tier- und Pflanzenarten, die sich im Laufe der Evolution an die extremen Bedingungen angepasst haben. Als Beispiel für eine Pflanze ist die Welwitschie (Welwitschia mirabilis) zu nennen, die nur in der Namibwüste vorkommt. Von den Landwirbeltieren sind es vor allem die Schuppenkriechtiere, die mit den extremen Bedingungen am besten zurechtkommen. Ein besonders spektakuläres Beispiel ist der Dornteufel (Moloch horridus) in der australischen Wüste. Da die Sandflächen tagsüber von der Sonne auf über 60 °C erhitzt werden, bewegen sich zahlreiche Tiere durch den Sand „schwimmend“ fort, u. a. der Apothekerskink (Scincus scincus) und die Beutelmulle (Notoryctes spp.) in Australien oder der Nebeltrinkerkäfer (Onymacris unguicularis) in der Namib. Ebenfalls in der Namib lebt der Palmatogecko, der die Tageshitze durch Nachtaktivität umgeht. Seine Füße sind mit Zwischenzehenhäuten ausgestattet, durch die er sein Körpergewicht auf einer größeren Fußsohlenoberfläche verteilen kann und so im lockeren Wüstensand nicht einsinkt.
Sandiges Sediment tritt am Grund von Seen, Flüssen und küstennahen Meeresregionen auf. Im Hinblick auf seine Funktion als Lebensraum wird es auch als sandiges Substrat bezeichnet. Die Lebensgemeinschaft, die sich auf sandige Substrate spezialisiert hat, wird Psammon genannt. Hierbei wird das Makropsammon vom Mesopsammon unterschieden.[5] Zum Makropsammon gehören strudelnde und sedimentfressende sowie einige wenige räuberische Invertebraten. Im Süßwasser sind dies vor allem Muscheln und Schnecken, im Meer auch Krebstiere, insbesondere die Thalassinidea (Maulwurfkrebse), Borstenwürmer, Seeigel und Seesterne.[5] Bauten von Organismen des Makropsammons sind in Sandsteinen fossil überliefert (z. B. Ophiomorpha, Arenicolites oder Skolithos). Beim Mesopsammon handelt es sich um Eukaryoten und verzwergte Invertebraten, die im Porenraum des Sediments leben. Dies sind Ciliaten, Urochordaten, Nematoden und verzwergte Vertreter der Weichtiere, Stachelhäuter, Borstenwürmer und Krebstiere. Im Süßwasser gehören auch Insektenlarven dazu.[5][6]
Sand ist, neben Luft und Wasser, die meistgenutzte natürliche Ressource der Erde. Von den jährlich in Bergwerken, Steinbrüchen usw. abgebauten 47 bis 59 Milliarden Tonnen an Erzen, Salzen, Kohlen sowie Steinen und Erden stellen Sande zwischen 68 und 85 Prozent.[9] Die Örtlichkeiten, in denen Sand abgebaut wird, werden als Sand- und Kiesgruben oder -werke bezeichnet.
In vielen Wirtschaftszweigen ist Sand ein wichtiger Rohstoff oder Ausgangsstoff für die verwendeten Rohmaterialien. In erster Linie dient er als Baustoff im Tief-, Verkehrswege- und Erdbau. Des Weiteren stellt Sand einen wesentlichen Zuschlagsstoff (Gesteinskörnung) bei Baustoffen wie Beton und Mörtel dar, der als gut formbare Masse, auch für die Innen- und Fassadenverzierung von Gebäuden verwendet wird. Im Bauwesen unterscheidet man Grubensande, Bruchsande, Brechsande, Fugensande, Flusssande und Meeressande. Quarzreicher Sand ist zudem ein Rohstoff für die Zementherstellung.
Wüstensand hingegen ist für die Bauindustrie nicht brauchbar, da die Sandkörner durch den Wind rund geschliffen sind und sich durch die fehlenden Kanten nicht mehr verhaken können (siehe auch: Sand als endliche Ressource).
Quarzsand wird auch als Strahlmittel beim Kugelstrahlen („Sandstrahlen“) eingesetzt. Als Ersatzmittel wird zunehmend feinkörniger Korund eingesetzt, da der Silikastaub eine Silikose („Staublunge“) hervorrufen kann. Zudem eignet sich Sand als Schleif-, Scheuer- (Scheuersand) und Poliermittel. Quarzsand ist auch Grundstoff für die Glasherstellung. Ferner dient Quarzsand als Rohstoff für die Gewinnung von reinem Silizium als Ausgangsstoff für die Fertigung von Bauteilen der Halbleitertechnik und Halbleiterelektronik.
Weiterhin wird Sand als Filtermedium in der Wasser- und Abwasseraufbereitung sowie in der Entwässerungstechnik (zum Beispiel bei Retentionsbodenfiltern) verwendet. Sande aus verschiedenen Materialien (Quarz, Korund, Zirkon) dienen als formgebendes Medium beim Sandgussverfahren.
Da Sand ein verhältnismäßig großes Porenvolumen hat, sind unterirdische Sand- und Sandsteinvorkommen wichtig als natürliches Speichermedium für Trinkwasser, Erdöl und Erdgas. Nahe der Erdoberfläche kann Sand auch als Ölsand energiewirtschaftliche und -politische Bedeutung haben.
Für den Fremdenverkehr ist Sand eine besondere Attraktion, wenn es oberflächliche Sandvorkommen in Form von Sandstränden und Dünen an der Küste gibt. Zudem findet er als Gestaltungselement in der Landschaftsplanung, im Gartenbau, im Sportbereich und auf Kinderspielplätzen (Sandkasten) Verwendung. Gewisse Sandarten eignen sich als Baustoff für Sandskulpturen.
Schienenfahrzeuge verfügen meist über eine Sandstreueinrichtung, aus der Sand auf die Schienen abgegeben werden kann, um den Reibungswiderstand der Schiene während des Bremsvorganges oder Anfahrens des Zuges zu erhöhen. Streusand wird im Winter bei Glatteis auf Fahrbahnen sowie Rad- und Fußwegen zur Wiederherstellung eines annähernd normalen Reibungswiderstandes des Untergrundes eingesetzt.
In der Vergangenheit (17. oder 18. Jahrhundert) wurde Sand als Schreibsand (auch Streusand genannt) zum Trocknen der schreibnassen Tinte verwendet, später aber durch Löschpapier ersetzt.
In Sanduhren rieselt sehr feinkörniger, gut sortierter, reiner trockener Quarzsand durch eine kleine Öffnung. Ein unter der Bezeichnung Vogelsand gehandeltes Gemisch aus überwiegend feinem Quarzsand wird als Einstreu in Vogelkäfigen verwendet. Es dient nicht nur der Hygiene, sondern unter anderem den Vögeln auch als Verdauungshilfe. Sandsäcke dienen als behelfsmäßiger Hochwasserschutz und als Schutz vor Geschossen im militärischen und zivilen Bereich.
Nur Quarzsande mit bestimmten kompositionellen und texturellen Eigenschaften können in der Bauindustrie zur Herstellung von Mörtel und Beton verwendet werden. Der jährliche Verbrauch von Sand und Kies betrug 2018 rund 40 Milliarden Tonnen (hauptsächlich zur Herstellung von Beton).[10] Durch das weltweite Bevölkerungs- und Städtewachstum und die damit verbundene Bautätigkeit besteht eine große Nachfrage nach geeignetem Sand, dessen natürliche Vorkommen in manchen Regionen fast erschöpft sind. Sand wird nach Wasser als der nach Volumen zweitwichtigste Rohstoff der Welt betrachtet.[10] Die große Nachfrage führte bereits zu internationalen Konflikten.[11] Der französische Regisseur Denis Delestrac drehte 2012 den Dokumentarfilm Sand Wars (deutsche Fassung: Sand – die neue Umweltzeitbombe)[12] über die Auswirkungen des Bausandmangels und die ökologischen und ökonomischen Auswirkungen des legalen und illegalen Sandabbaus und -handels.
Indien ist ein Hauptexportland von Bausand. Dort gehören Berichte über die sogenannte Sandmafia zu den Alltagsnachrichten.[13] Die Umweltschützerin Sumaira Abdulali hat sich in Indien mit ihrem Kampf gegen die Sandmafia einen Namen gemacht. Ein weiterer Brennpunkt illegalen Sandabbaus ist Marokko. Dort findet nach einem Bericht der Santa Aguila Foundation aus dem Jahr 2007 der weltweit größte Abbau von Küstensanden statt,[14] und Angaben des Deutschlandfunks aus dem Jahr 2016 zufolge seien dort „bereits die Hälfte der Strände widerrechtlich abgetragen worden.“[15] Aus dem Viktoriasee wird, ermöglicht durch eine unklare Gesetzeslage, in großem Maßstab Sand für die Großbaustellen im infolge umfangreicher chinesischer Investitionen boomenden Uganda gefördert, was zu Landverlusten und Konflikten mit den Fischern am See führt.[16] Das Emirat Dubai (Vereinigte Arabische Emirate) verfügt über viel Sand, doch ist Wüstensand als Bausand nicht gut geeignet: Er ist zu feinkörnig und die Körner sind zu rund. Stattdessen wurde für die zahlreichen lokalen Bauvorhaben bis Anfang der 2010er Jahre Sand vom Meeresboden verwendet, mit schwerwiegenden Folgen für das betroffene benthische Ökosystem. Außerdem muss Meeressand aufwändig von Salz gereinigt werden, bevor er als Bausand verwendet wird, da sonst die Bewehrung im Stahlbeton korrodiert.[9] Weil diese Vorkommen mittlerweile fast erschöpft sind, importiert Dubai nunmehr Bausand in großem Umfang per Schiff aus Australien.[17] Weltweit werden mit Saugbaggern etwa vier bis acht Milliarden Tonnen Sand pro Jahr von den Meeresböden abgesaugt.[18]
In Deutschland regt sich lokal zunehmend Widerstand gegen die Ausweitung des Sandabbaus, durch die unter anderem eine unkontrollierte Zerstörung von Landschaft und Ackerflächen befürchtet wird.[19]
Analog zu „Peak Oil“ wird im Zusammenhang mit der Begrenztheit der Ressource Bausand der Begriff „Peak Sand“ gebraucht.[20] Negative Effekte des Abbaus weit größerer Sandmengen, als im Zuge des Gesteinskreislaufes in Tiefebenen, an den Küsten und auf den küstennahen Schelfen wieder akkumulieren können,[9] werden durch anderweitige menschliche Aktivitäten noch verstärkt: Große Stauseen bilden in Gebirgsregionen ausgedehnte künstliche Sedimentationsräume, in denen sich die in den Oberläufen der Flüsse transportierten Sande ablagern und nicht mehr in die Tiefebenen und Küstengewässer gelangen. Dies verstärkt die natürliche Küstenerosion.[21] Das UN-Umweltprogramm fordert deshalb unter anderem ein Verbot von Sandabbau an Küsten.[22]
Der Bedarf an natürlichen Bausanden könnte durch Frischbetonrecycling sowie durch die bevorzugte Nutzung von recyceltem Bauschutt (sogenannte rezyklierte Gesteinskörnungen) und der feinkörnigen Nebenprodukte aus der Herstellung von Gesteinskörnungen aus Naturstein (Feinsplitt, Brechsand und Gesteinsmehl, engl. zusammengefasst unter der Bezeichnung quarry dust) zur Betonherstellung verringert werden.[9] Nach derzeitigem Stand (2011) kann jedoch nur ein relativ geringer Teil des natürlichen Sandes durch recycelten Betonbruch ersetzt werden, da sonst der Recyclingbeton nicht die gewünschten mechanischen Eigenschaften aufweist.[23][24]
Quietschender Sand (engl. squeaky sand) ist ein geologisches Phänomen, das an Sandstränden auftritt. Sand kann unter gewissen Bedingungen beim Begehen unter den Füßen quietschen.[25]
Quietschender Sand findet sich an Stränden auf allen Kontinenten der Welt. Bedingung sind ein durchlässiger nichtbindiger Untergrund, eine bestimmte Art von Quarzsand ohne Kalkanteil sowie eine bestimmte Korngröße (etwa 150–500 Mikrometer). Der Sand muss in einer nach Korngrößen geschichteten, sogenannten gestörten Lage (hervorgerufen meist durch Wind) liegen, einen bestimmten Feuchtigkeitsgehalt aufweisen und zu einer glatten und abgerundeten Oberfläche verwittert bzw. abgeschliffen sein. Das Quietschen des Sandes entsteht durch mechanische Beanspruchung, also den beim Darüberlaufen eingetragenen Druck und die dadurch hervorgerufene Reibung zwischen den Körnern.[26] Der Strand Squeaky Beach im Südosten Australiens wurde nach dem quietschenden Sand benannt.[27]
Es besteht kein Zusammenhang zum singenden Sand, der in seltenen Fällen vom Wind an Sanddünen hervorgerufen wird.[28] Es sind kaum mehr als 30 Dünen singenden Sandes in Wüsten und an Stränden in Afrika, Asien und Nordamerika bekannt.[28]
Regionen, Orte und Straßen, die mit dem Vorkommen, dem Abbau, dem Transport oder der Lagerung von Sand in Zusammenhang stehen oder standen (vgl. Verbreitung), weisen darauf nicht selten durch Namen hin, in denen die Wörter „Sand“ oder stellvertretend auch „Gries“ oder „Grieß“ vorkommen, in Deutschland z. B. Sandhausen im Norden der Oberrheinischen Tiefebene, Riedern am Sand im Klettgau und das unweit davon gelegene Grießen, in Österreich z. B. Gries am Brenner, die Sandgasse in Linz, der Stadtbezirk Gries in Graz sowie Straßennamen wie An der Sandgrube. Die große Teile der Norddeutschen Tiefebene prägenden Sandböden werden unter anderem in der ersten Zeile des Brandenburgliedes („Märkische Heide, märkischer Sand“) rezipiert.
„Sand“, als rhetorische Figur, findet sich in vielen Redewendungen. Dabei ist sie oft negativ besetzt:
In Bildfiguren (z. B. Spuren im Sand) ist Sand ein Symbol für die (vergehende) Zeit und für Vergänglichkeit. Michel Foucault spricht in den letzten Worten des Buches Die Ordnung der Dinge vom Verschwinden des Menschen „wie am Meeresufer ein Gesicht im Sand“. Besonders ausdrucksstark in dieser Hinsicht sind Sanduhren, zumal sie nur für die Bestimmung endlicher Zeiträume benutzt werden können („die Zeit verrinnt“).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.