Aus Wikipedia, der freien Enzyklopädie
Eigentliche Abbildungen sind spezielle stetige Abbildungen, die im mathematischen Teilgebiet der mengentheoretischen Topologie untersucht werden. Im Wesentlichen zeichnen sich eigentliche Abbildungen dadurch aus, dass sie besonders gut mit kompakten Mengen interagieren.
Die Definition eigentlicher Abbildungen variiert von Autor zu Autor. Eine häufig verwendete Definition ist:
Viele Autoren fordern zusätzlich noch dass alle eigentlichen Abbildungen abgeschlossen sind, also abgeschlossene Mengen auf abgeschlossene Mengen abbilden. Mit dieser strengeren Definition ist eine stetige Abbildung also genau dann eigentlich wenn die folgenden äquivalenten[1] Eigenschaften erfüllt sind:
Für Abbildungen , deren Zielraum lokalkompakt und Hausdorff ist, sind die beiden Definitionen äquivalent; im allgemeinen Fall gibt es aber auch stetige Abbildungen die nur nach der ersten Definition eigentlich sind. Im Folgenden ist mit „eigentlich“, sofern nicht anders angedeutet, stets die zweite Definition gemeint.
Einige Autoren fordern mit einer noch stärkeren Definition sogar dass alle eigentlichen Abbildungen separiert sind in dem Sinne, dass ihre Fasern relativ zum Definitionsraum Hausdorff sind. Diese Definition ist vor allem in der algebraischen Geometrie verbreitet, wegen ihrer Relation zu eigentlichen Schemamorphismen.[1]
Eigentliche Abbildungen spielen eine Rolle in verschiedenen Konstruktionen mit kompakten Räumen. Zum Beispiel ist für stetige Funktionen die durch definierte Fortsetzung auf die Einpunktkompaktifizierungen von und genau dann stetig wenn unter alle Urbilder von abgeschlossenen kompakten Mengen kompakt sind; da dies für alle eigentlichen Abbildungen der Fall ist aber nicht für alle stetigen Abbildungen bildet die Einpunktkompaktifizierung einen Funktor auf der Kategorie aller eigentlichen Abbildungen aber nicht auf der Kategorie aller topologischen Räume. Ein ähnliches Problem ergibt sich bei Kohomologie mit kompaktem Träger: diese ist ebenfalls nur auf der Kategorie der eigentlichen Abbildungen funktoriell, aber nicht auf der aller stetigen Abbildungen.[2] Insbesondere ist sie nicht homotopieinvariant, sondern wird nur von in dem Sinne eigentlichen Homotopieäquivalenzen erhalten als dass alle beteiligten Abbildungen (also die Abbildung selber, ihr Homotopieinverses und die beiden Homotopien) eigentliche Abbildungen sind.
Seamless Wikipedia browsing. On steroids.