Loading AI tools
Filter, der bei der Signalverarbeitung von zeitkontinuierlichen Signalen verwendet wird Aus Wikipedia, der freien Enzyklopädie
Elektronische Filter werden als Analogfilter bzw. analoge Filter bezeichnet, wenn sie die Signale zeit- und amplitudenkontinuierlich verarbeiten. Sie dienen entweder zur Formung von Signalen im gewünschten Sinn oder zur Feststellung, welche Frequenzen vertreten sind (Signalanalyse).
Analogfilter bilden den Gegensatz zu Digitalfiltern. Dieser liegt in der Realisierung: Analoge Filter werden mit passiven elektronischen Bauelementen wie Kondensatoren, Spulen, Widerständen oder aktiv mit Operationsverstärkern aufgebaut.
Analogfilter dämpfen oder verstärken (wie ihre digitalen Gegenstücke) bestimmte Signalanteile bzw. Schwingungen in einem Gemisch von Frequenzen. Beispiel zur Dämpfung ist ein Kerbfilter (Notchfilter), das Signalanteile einer bestimmten Frequenz unterdrückt. Häufige Anwendung ist die Unterdrückung der 50-Hz-Netzfrequenz, wenn diese Signalanteile bei Signalübertragungen stören. Ein Bandsperrfilter dämpft Signale eines ganzen Frequenzbereiches, ein Bandpassfilter lässt Signale eines Frequenzbereiches passieren und verstärkt das Signal, wenn dies entsprechend dimensioniert ist. Ein Tiefpassfilter überträgt (verstärkt) Signale unterhalb einer Grenzfrequenz. Ein Hochpassfilter überträgt (verstärkt) Signale oberhalb einer Grenzfrequenz.
Wichtige Typen von Analogfiltern sind:
Bei elektromechanischen Filtern findet während des Filterns eine Wandlung von elektrischer in mechanische Energie statt oder umgekehrt.
Passive analoge Filter können in Form verschiedenartiger Topologien realisiert werden, wobei insbesondere in der elektrischen Schaltungstechnik die Zweitordarstellung mit komplexen Impedanzen Z und komplexen Admittanzen Y üblich ist. Durch entsprechende Modellgestaltung kann diese Art der Filterdarstellung auch auf andere Analogfilter, wie beispielsweise für mechanische Systeme, angewendet werden.[1]
In folgenden Tabellen sind einige gebräuchliche passive analoge Filtertopologien zusammengefasst, wie sie auch im Bereich der Zweitortheorie anzutreffen sind. Die Unterteilung erfolgt in erdungsunsymmetrische und erdungssymmetrische Formen.
Erdungsunsymmetrische Formen | |||||
---|---|---|---|---|---|
L-Filter | T-Filter | Π-Filter | |||
Kettenleiter | |||||
Erdungssymmetrische Formen | |||||
---|---|---|---|---|---|
C-Filter | H-Filter | Box-Filter | |||
Kettenleiter | |||||
X-Filter (Latticefilter, mid-T-Ableitung) | X-Filter (Latticefilter, mid-Π-Ableitung) | ||||
Vorteile gegenüber digitalen Filtern
Nachteile
Grundsätzlich gibt es zahlreiche Anwendungen, wo die Anwendung analoger Filter unumgänglich ist, da sie durch Wahl entsprechender Bauelemente entsprechend leistungsstark gebaut werden können. Beispiele sind Oberschwingungsfilter in Hochspannungsnetzen.
Bei der Umsetzung von zeitkontinuierlichen in zeitdiskrete Signale bzw. vice versa im Rahmen der digitalen Signalverarbeitung kommen zur Vermeidung von Aliasing grundsätzlich zeitkontinuierliche (analoge) Filter zur Anwendung.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.