Loading AI tools
Satz in der Differentialgeometrie Aus Wikipedia, der freien Enzyklopädie
Der Satz von Gauß-Bonnet (nach Carl Friedrich Gauß und Pierre Ossian Bonnet) ist eine wichtige Aussage über Flächen, die ihre Geometrie mit ihrer Topologie verbindet, indem eine Beziehung zwischen Krümmung und Euler-Charakteristik hergestellt wird. Dieser Satz wurde von beiden Mathematikern unabhängig voneinander gefunden. Der Satz behandelt das Zusammenspiel zwischen lokaler Geometrie und globaler Topologie von Flächen. Grob gesprochen besagt dieser Satz, dass man durch Messung der lokalen Krümmung überall auf der Fläche entscheiden kann, ob man sich etwa auf einer Sphäre oder einem Torus befindet.
Während Gauß seine Arbeiten dazu nicht vollständig veröffentlichte (in den Disquisitiones circa superficies curvas von 1827 ist ein Spezialfall), wurde die Integralformel von Gauß und Bonnet zuerst 1848 von Bonnet veröffentlicht.[1]
Sei eine kompakte zweidimensionale riemannsche Mannigfaltigkeit mit Rand . Bezeichne mit die Gaußkrümmung in den Punkten von und mit die geodätische Krümmung der Randkurve . Dann gilt
wobei die Euler-Charakteristik von ist. Der Satz kann im Besonderen auf Mannigfaltigkeiten ohne Rand angewendet werden. Dann fällt der Term weg.
Man kann den Satz von Gauß-Bonnet auch auf simpliziale Flächen verallgemeinern, wobei man den Winkeldefekt einer Ecke als diskrete Gaußkrümmung definiert.
Verzerrt man eine Fläche, so bleibt ihre Euler-Charakteristik unverändert, im Gegensatz zur Gaußkrümmung an den einzelnen Punkten. Der Satz sagt aus, dass das Integral über die Krümmung, also die Gesamtkrümmung (= Integralkrümmung, curvatura integra), unverändert bleibt.
Eine anschauliche Deutung der Integralkrümmung ergibt sich durch die Untersuchung des sphärischen Bildes eines Gebietes der Fläche . Dieses sphärische Bild erhält man, wenn man die Normaleneinheitsvektoren von den Punkten des Gebietes der Fläche von einem festen Punkt, etwa dem Koordinatenursprung, aus abträgt. Die Spitzen dieser Vektoren beschreiben dann einen Bereich auf der Einheitssphäre, der gerade das sphärische Bild des Gebietes von ist. Der Flächeninhalt des sphärischen Bildes ist dann bis auf das Vorzeichen gleich der Integralkrümmung des Gebietes von . Es ist anschaulich klar, dass dieser Flächeninhalt größer wird, wenn sich die Fläche stärker krümmt. Wird nun das Gebiet von einer einfachen, geschlossenen Kurve berandet, so lässt sich die Integralkrümmung als ein Kurvenintegral über die Kurve ausdrücken.
Wendet man den Satz auf geschlossene Flächen an (siehe auch Beispiele unten), so ergeben sich besonders interessante Resultate. Ist eine geschlossene Fläche anschaulich die Oberfläche eines endlich glatten Körpers, der von Löchern durchbohrt ist, so heißt die Zahl das Geschlecht der Fläche ( ist die Sphäre, der Torus und die Brezel, …). Die Integralkrümmung einer Fläche vom Geschlecht hängt nicht von der Gestalt der Fläche ab und ist gleich:
Dies ist eine wichtige topologische Eigenschaft der Fläche mit Geschlecht , die sogar bei beliebigen stetigen Deformationen invariant bleibt. Es gestattet also topologische Eigenschaften einer Fläche durch differentialgeometrische Größen auszudrücken, hier durch die Integralkrümmung.
Hat die Fläche eine stückweise differenzierbare Randkurve, so kann der Satz von Gauß-Bonnet auch für diesen Fall formuliert werden. In diesem Fall ergibt sich auf der linken Seite ein Zusatzterm.
Sei wie zuvor eine kompakte und orientierbare zweidimensionale riemannsche Mannigfaltigkeit mit Rand und sei die Gaußkrümmung in den Punkten von und mit die geodätische Krümmung der Randkurve . Dann gilt
Die Außenwinkel sind definiert als die Winkel zwischen dem rechts- und dem linksseitigen Limes der Tangentialvektoren an den Knickstellen von . Die Randkurve muss so orientiert sein, dass zur Fläche zeigt. Dabei ist der Normalenvektor der Fläche und der Tangentialvektor an die Randkurve.
Diese von Gauß stammende Folgerung besagt, dass die Gesamtkrümmung eines einfach zusammenhängenden geodätischen Dreiecks gleich dessen Winkelexzess ist. Für den Spezialfall der 2-Sphäre sieht man über die Außenwinkelsumme eines infinitesimalen (also flachen) Dreiecks von die Äquivalenz zum Satz von Gauß-Bonnet. Die Äquivalenz gilt allerdings – im zweidimensionalen Fall – auch allgemein, was mithilfe einer Triangulierung eingesehen werden kann, denn für sie gilt:
Der Satz von Gauß-Bonnet lässt sich auf Dimensionen verallgemeinern, was von André Weil und Carl B. Allendoerfer 1943 und mit neuen Beweisen von Shiing-Shen Chern 1944 gemacht wurde.
Sei eine kompakte orientierte riemannsche Mannigfaltigkeit mit gerader Dimension und sei der riemannsche Krümmungstensor. Da für diesen gilt, kann dieser als vektorwertige Differentialform
verstanden werden.[2] Unter diesen Voraussetzungen gilt dann
wobei die pfaffsche Determinante ist.
Mit dem Wissen, dass für den Fredholm-Index von die Gleichheit gilt, wobei die äußere Ableitung ist, kann dieser Satz als Spezialfall des Atiyah-Singer-Indexsatzes verstanden werden. In diesem Zusammenhang bietet der Satz von Gauß-Bonnet-Chern also eine Möglichkeit zur Berechnung des topologischen Index des Operators [3]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.