strwythur algebraidd From Wikipedia, the free encyclopedia
Mewn mathemateg, mae modrwy yn un o'r strwythurau algebraidd sylfaenol a ddefnyddir mewn algebra haniaethol. Mae'n cynnwys set sydd â dau weithred deuaidd sy'n cyffredinoli gweithrediadau rhifyddol adio a lluosi. Trwy'r cyffredinoli hwn, mae theoremau rhifyddeg yn cael eu hymestyn i wrthrychau nad ydynt yn rhifiadol megis polynomialau, cyfresi, matricsau a ffwythiannau.
Mae'r fodrwy yn perthyn i "grŵp Abelaidd", gydag ail gweithrediad deuol, cysylltiol - a dosbarthol dros y weithrediadau'r grŵp Abelaidd. Mae gan y fodrwy, fel arfer, elfen unfathiant (identity element), ond nid gan bob awdur. Drwy estyniad o'r cyfanrifau, gelwir y gweithrediadau grŵp Abelaidd yn "adio" ac enw'r ail weithrediad deuaidd yn "lluosi".
Datblygwyd y cysyniad o fodrwy rhwng y 1870au a'r 1920au. Mae'r cyfranwyr allweddol yn cynnwys Dedekind, Hilbert, Fraenkel, ac Emmy Noether. Ffurfiolwyd y cysyniad yn gyntaf o fewn damcaniaeth rhifau, a modrwyau polynomial o fewn geometreg algebraidd a damcaniaeth sefydlynnau (invariant theory). Wedi hynny, bu'r cysyniad yn ddefnyddiol mewn canghennau eraill o fathemateg, megis geometreg a dadansoddiad mathemategol.
Yr enghraifft enwocaf o fodrwy yw'r set o bob cyfanrif, , sy'n cynnwys y rhifau
Mae nodweddion cyfarwydd ar gyfer adio a lluosi cyfanrifau yn gweithredu fel model ar gyfer gwirebau'r modrwyau.
Mae modrwy yn set R sydd a dau gweithrediad euaidd + ac · sy'n bodloni'r tri set o wirebau canlynol, a elwir yn "wirebau modrwy"[1][2][3]
1. Mae R yn grŵp Abelaidd, dan adio, sy'n golygu fod:
2. Monoid yw R, mewn lluosi, sy'n golygu fod:
3. Mae lluosi yn ddosbarthol, o ran adio:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.