staticky neurčitý nosník uložený po celé délce nebo její části na pružném podloží. From Wikipedia, the free encyclopedia
Mezi staticky neurčité úlohy mechaniky patří také nosník na pružném podkladu (podloží). Je to obecně křivý nebo přímý nosník, který je spojitě podepřen nebo obklopen podložím buď po celé délce nebo části své délky. Vlivem zatížení se nosník deformuje a vtlačuje do podloží. Dochází tedy k průhybu nosníku a zároveň také ke stlačování podloží. Úlohy řešení nosníků na pružném podkladu se vyskytují při řešení základů různých staveb a konstrukcí, při vyztužování v dolech, tunelech a výkopových pracích, při řešení podzemních potrubních systémů, při navrhování kolejnic v železniční dopravě, v lodním stavitelství, při sportu (např. lyže na sněhu), při výpočtu namáhání mostních plovoucích pontonových konstrukcí pro ženijní vojsko, interakci kostí se šrouby v chirurgii, výpočtu namáhání kořenového systému rostlin atp. Obvykle se nosníky na pružném podkladu dělí na krátké, dlouhé a velmi dlouhé (nekonečné či polonekonečné délky).[1][2][3][4][5].
Běžné případy z praxe lze značně zjednodušit zavedením vhodného modelu podkladu a pak je možné v některých případech získat analytické řešení. Odezva v podloží se pak nemusí vůbec řešit.
Jestliže je spojitá reakce v podloží qR /Nm−1/ přímo úměrná průhybu v /m/ nosníku nebo přímo úměrná derivacím průhybu a podloží se trvale nedeformuje, pak je nosník uložen na pružném podkladu. V opačném případě je podklad plně nebo částečně poddajný (nepružný).
Důvěryhodné modely pružného podkladu je nutné stanovovat na základě experimentu ve spojení s vtlačováním konstrukce do podloží (vyhodnocování zatížení v závislosti na průhybu). Existuje několik modelů pružného podkladu zaměřujících se především na ohybové zatěžování nosníku či desek.
Pružný podklad tzv. Winklerův (poprvé publikovaný v Praze v r. 1867[6]), je nejstarším, nejběžnějším a nejjednodušším modelem podloží. Případné možné plastické deformace podloží se neuvažují. Winklerův model předpokládá, že spojitá reakce podloží qR je přímo úměrná průhybu v v daném místě. Platí tedy qR=k*v), kde k /Nm−2/) je konstanta úměrnosti (koeficient podloží, koeficient ložnosti). Konstantu k lze spolehlivě stanovit jen z měření, případně lze použít vztah k=K*B, kde B /m/ je příčná šířka stykové plochy nosníku s podložím a K /Nm−3/ je modul stlačitelnosti podloží. Modul stlačitelnosti podloží je obecně proměnlivý a náhodný parametr závislý na typu podloží a jeho kvalitě či stupni degradace, ročním období, vlhkosti a teplotě. Nicméně, orientačně platí následující tabulka charakteristických hodnot:[2] a [5]
Druh podloží | K /Nm−3/ | |
---|---|---|
Suchý nebo vlhký písek | Kyprý (nezhutněný) | 8e6 až 2.5e7 |
Středně zhutněný | 2.5e7 až 1.25e8 | |
Těžký (silně zhutněný) | 1.25e8 až 3.75e8 | |
Mokrý (nasycený) písek | Kyprý (nezhutněný) | 1e7 až 1.5e7 |
Středně zhutněný | 3.5e7 až 4e7 | |
Těžký (silně zhutněný) | 1.3e8 až 1.5e8 | |
Jíl | Tuhý | 1e7 až 2.5e7 |
Velmi tuhý | 2.5e7 až 5e7 | |
Tvrdý | více než 5e7 | |
Půda střední hustoty | 4.9e6 až 4.9e7 | |
Hustá půda | 4.9e7 až 9.8e7 | |
Kamenné zdivo | 3.9e9 až 5.9e9 | |
Beton | 7.8e9 až 1.47e10 |
Víceparametrické modely pružného podkladu vyjadřují spojitou reakci podloží qR jako přímo úměrnou průhybu v a také přímo úměrnou derivacím průhybu (tj. např. dv/dx a vyšší derivace). Nicméně, experimentální stanovení podoby těchto modelů je náročnější. Zde stojí za zmínku uvést například modely autorů Pasternak, Hetényi, Filonenko-Borodich, Kerr, Reissner a Vlasov-Leontiev.[2], [7], [8] a [5]
Podobně jako lineární modely mohou být jednoparametrické či víceparametrické. Obvykle bývají stanoveny nelineární regresí výsledku experimentů (proložení závislostí zatížení na průhybu vhodnou aproximační funkcí), tj. qR=f(v, dv/dx, zatížení, ...).
Dalším příkladem nelineárního modelu je unilaterální (jednosměrný) Winklerův model, který umožňuje i odlepení od podloží, viz např. https://www.engmech.cz/improc/2017/0670.pdf.
Vnitřní statické účinky, průhyby a napětí v nosníku na pružném podkladu lze řešit pomocí diferenciálních rovnic.
Dle referencí [1],[2] a [5] je provedeno odvození za následujících předpokladů
Vlivem zátěžných účinků se rovný úsek nosníku dx zatlačuje do podloží a také ohýbá. Tato skutečnost se projeví změnou poloměru křivosti r /m/, indukováním vnitřních statických účinků (tj. normálové síly N /N/, posouvající síly T /N/ a ohybového momentu Mo /Nm/) a samozřejmě také spojitou reakcí v podloží qR. Z podmínek rovnováhy sil ve svislém směru a rovnováhy momentů k bodu 2*, pak vyplývají Schwedlerovy věty (nazývané také jako Schwedler-Žuravského věty), které je nutno dosadit do diferenciální rovnice ohybu. Podle [1],[2] a [5] a následujícího obrázku pak lze odvodit diferenciální rovnici ohybu nosníku na pružném podkladu, kde h /m/ je výška nosníku, q /Nm−1/ je spojité zatížení, t2-t1 /K/ je rozdíl teploty mezi dolní a horní částí nosníku, αt /K−1/ je součinitel teplotní délkové roztažnosti, E /Pa/ je modul pružnosti v tahu, G /Pa/ je modul pružnosti ve smyku, β /1/ je součinitel rozložení smykového napětí po průřezu nosníku, JZT /m4/ je hlavní kvadratický moment průřezu nosníku počítaný k ose Z (tj. k ose kolmé na rovinu XY) a S /m2/ je plocha příčného průřezu nosníku. Blíže[2] a [5].
Nejjednodušším tvarem rovnice ohybu nosníku na pružném podkladu je diferenciální rovnice pro Winklerův pružný podklad. Blíže.[1], [2] a [5].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.