element químic amb propietats de metalls i no-metalls From Wikipedia, the free encyclopedia
Els semimetalls són una de les tres categories principals d'elements químics, juntament amb els metalls i els no-metalls. Tenen propietats químiques intermèdies entre les dels uns i les dels altres.[1] Els elements que tots els autors consideren semimetalls són sis: bor (B), silici (Si), germani (Ge), arsènic (As), antimoni (Sb), tel·luri (Te). Segons diferents criteris algunes fonts també inclouen alguns dels següents: bismut (Bi),[2] poloni (Po) i àstat (At).[3][4]
Aquest article tracta sobre el grup d'elements de la taula periòdica (metal·loides). Si cerqueu el tipus de sòlid en funció de la seva conductivitat, vegeu «semi metalls». |
Malgrat la seva aparença metàl·lica, la diferència principal amb els metalls és que tendeixen a ser semiconductors en lloc de conductors elèctrics.[5] En la taula periòdica se situen en diagonal des de la part superior esquerra (grup 13) a la inferior dreta en el bloc p, fent de frontera entre els metalls i no-metalls.
Des de mitjans del segle xx els han anomenat «metal·loides» («metall» més la terminació -oide, que ve del grec εἶδος, eîdos, 'forma', 'aparença'),[6] però és una denominació ambigua perquè abans es denominava amb aquest terme als no-metalls.[7][8] La Unió Internacional de Química Pura i Aplicada (IUPAC) el 1971 desaconsellà el seu ús i substituir-lo pel terme «semimetalls»,[9] amb el prefix llatí semi-, que significa 'no completament, quasi'.[10]
Element | 1a energia
d'ionització (kJ/mol) |
Electronegativitat
de Pauling |
Estructura de la
banda electrònica |
---|---|---|---|
β-bor | 800 | 2,04 | Semiconductor |
α-silici | 786 | 1,90 | Semiconductor |
α-germani | 762 | 2,01 | Semiconductor |
α-arsènic | 944 | 2,18 | Quasimetall |
α-antimoni | 830 | 2,05 | Quasimetall |
α-tel·luri | 869 | 2,10 | Semiconductor |
àstat | 899 | 2,2 | Semiconductor |
No hi ha acord complet en alguns dels elements que formen part dels semimetalls. Una proposta de definició indica que els semimetalls, en el seu estat estàndard, han de complir tres requisits:
Hi ha sis elements comunament reconeguts sense discussió com a semimetalls: bor (B), silici (Si), germani (Ge), arsènic (As), antimoni (Sb), tel·luri (Te). Aquests criteris proporcionen una base útil per establir una definició més formal d’un semimetall per aquells altres elements on no hi ha acord. El seleni té una primera energia d'ionització de 941 kJ/mol i de vegades es descriu com a semiconductor,[4] la seva energia de la banda prohibida és 1,7–2,4 eV, més alta que la dels altres semimetalls (inferiors a 1,55 eV) però inferior al llindar de 4 eV a partir del qual es consideren aïllants.[12] Tanmateix, la seva electronegativitat de 2,55 és massa alta. El poloni té una primera energia d’ionització de 812,1 kJ/mol i una electronegativitat de 2,0, però té una estructura de bandes de tipus metàl·lic. En aquest sentit, el seleni es classifica millor com a no-metall i el poloni com a metall. L'àstat es pot considerar raonablement com un semimetall o un metall.[4]
El silici és el 2n element en abundància, representa el 28 % de la massa de l'escorça de la Terra, més de la quarta part de l'escorça està constituïda per silici. El bor és el següent semimetall en abundància, però a gran distància del silici, ja que ocupa la posició 38a en quan a abundància a l'escorça terrestre amb una concentració mitjana de 10 ppm (mg/kg). El germani és el següent i ocupa la posició 52a en abundància amb una concentració mitjana de 2 ppm. L'arsenic segueix al germani en quan a abundància amb una concentració mitjana d'1,5 ppm. L'antimoni ocupa la posició 63 a l'escorça amb una concentració de 0,2 ppm i el tel·luri és el menys abundant dels semimetalls, és el 72è amb una concentració de 5 ppb (μg/kg).[13]
Mentres els metalls formen cristalls on els àtoms es troben enllaçats mitjançant enllaç metàl·lic, els semimetalls tenen una estructura cristal·lina que resulta de l'enllaç covalent. El silici elemental, l’antimoni, l’arsènic, el germani i el tel·luri tenen un llustre brillant i, per tant, semblen metalls. El germani i el silici tenen una estructura de diamant quan es cristal·litzen. Els àtoms del cristall tenen enllaços covalents que els ancoren a quatre àtoms veïns a les cantonades d’un tetraedre. Les molècules tridimensionals massives són cristalls simples de germani i silici. L’arsènic té diversos al·lòtrops, amb l’al·lotrop més estable que té una estructura en capes composta de làmines d’àtoms d’arsènic. Els àtoms d’arsènic estan units a altres tres àtoms que els envolten. L’antimoni i l’arsènic tenen estructures similars a l'estructura del grafit, disposades en una xarxa. Mentrestant, el tel·luri té cristalls al seu interior que contenen infinites cadenes espirals d’àtoms de tel·luri. El bor forma un icosaedre amb àtoms de bor a cada cantonada i l'estructura cristal·lina és transparent. La disposició més comuna dels àtoms és aquella en què estan extremadament junts, amb els enllaços bor-bor que tenen una longitud aproximada de 176 pm. També hi ha altres formes dels icosaedres, que tenen diferents disposicions dels àtoms de bor. El silici forma fàcilment compostos amb oxigen, creant enllaços en format Si–O–Si. Aquests enllaços són extremadament importants en la formació de minerals, una mica anàlegs als enllaços de carboni que tenen una importància fonamental en la formació de compostos orgànics en plantes i animals.
Una de les característiques més destacades dels semimetalls és que presenten propietats de semiconductors. Segons la teoria de bandes en els metalls no existeix diferència d'energia entre la banda de valència, ocupada pels electrons, i la banda de conducció perquè es troben superposades, la qual cosa fa que a qualsevol temperatura els metalls siguin bons conductors de l'electricitat ja que els electrons poden moure's lliurament per aquesta banda de conducció. Pel que fa als no-metalls, en la majoria la diferència d'energia es prou alta perquè dificulti el pas d'electrons de la banda de valència a la banda de conducció a temperatures normals, per exemple el valor de l'energia de la banda prohibida (diferència d'energia entre la banda de conducció i la banda de valència) del carboni diamant és de 5,5 eV o la del sofre 4,2 eV, per la qual cosa són aïllants. En el cas dels semiconductors la banda prohibida té poca energia, la qual cosa fa que sigui possible que, en elevar la temperatura o per acció de la llum, alguns electrons puguin adquirir energia suficient per situar-se en la banda de conducció. La conductivitat doncs, pot ser controlada amb la temperatura, amb la llum o dopant de semiconductor amb altres espècies que aportin més electrons.
B | Si | Ge | As | Sb | Te | |
---|---|---|---|---|---|---|
Configuració electrònica | [He] 2s² 2p¹ | [Ne] 3s² 3p² | [Ar] 3d¹⁰ 4s² 4p² | [Ar] 3d¹⁰ 4s² 4p³ | [Kr] 4d¹⁰ 5s² 5p³ | [Kr] 4d¹⁰ 5s² 5p4 |
Densitat (g/cm³) a T ambient | 2,34 | 2,33 | 5,32 | 5,75 | 6,68 | 6,24 |
Duresa (escala de Mohs) | 9,4 | 6,5 | 6,0 | 3,5 | 3,0 | 2,25 |
Punt de fusió (°C) | 2 076 | 1 414 | 938,3 | 817 | 630,6 | 449,5 |
Punt d'ebullició (°C) | 4 000 | 3 265 | 2 833 | 603 (sublima) | 1 587 | 988 |
Conductivitat tèrmica (W/m K) | 27,4 | 149 | 60,2 | 50,2 | 24,4 | 1,97–3,38 |
Calor de fusió (kJ/mol) | 50,2 | 50,21 | 36,94 | 24,44 (gris) | 19,79 | 17,49 |
Energia de la banda prohibida a 300 K (eV) | 0,74–1,55 | 1,12 | 0,81[15] | 0,3 (α)[15] | 0,1 | 0,33 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.