হিলবার্ট জগৎ
উইকিপিডিয়া থেকে, বিনামূল্যে একটি বিশ্বকোষ
হিলবার্ট জগৎ (জার্মান: Hilbertraum হিল্বেয়াট্রাউম্, [Hilbert space হিল্বার্ট্ স্পেইস্] ত্রুটি: {{Lang-xx}}: text has italic markup (সাহায্য)) একটি গাণিতিক ধারণা, যার উদ্ভাবক জার্মান গণিতবিদ ডাভিড হিলবের্ট। হিলবার্ট জগৎ হচ্ছে ইউক্লিডীয় জগতের একটা গাণিতিক সাধারণীকরণ যেখানে জ্যামিতিক ধারণাগুলো দুই বা তিন মাত্রা থেকে অসীম মাত্রায় উন্নীত করা হয়। গাণিতিকভাবে বললে হিলবার্ট জগৎ হচ্ছে একটা সম্পূর্ণ অন্তঃগুণজ জগৎ অর্থাৎ যদি একটা ভেক্টরের ধারা কোন একটা সীমার দিকে অগ্রসর হতে থাকে তাহলে সেই সীমাও অবশ্যই এই জগতেই থাকবে।
- এই নিবন্ধে ধরে নেওয়া হয়েছে পাঠক বিশ্লেষণী জ্যামিতি, সীমা, ভেক্টর জগৎ এবং ফাংশনাল বিশ্লেষণের সাথে পরিচিত।

গণিত, পদার্থবিজ্ঞান এবং প্রকৌশলের যেসব শাখায় অসীম মাত্রার ফাংশনাল জগতের প্রয়োজন হয়, সেখানে অহরহ হিলবার্ট জগতকে অন্তর্নিহিত গাণিতিক সংগঠন হিসাবে ব্যবহার করা হয়। হিলবার্ট জগতের প্রায়োগিক জ্ঞান ছাড়া আংশিক অন্তরক সমীকরণ, কোয়ান্টাম মেকানিক্স এবং সিগনাল প্রক্রিয়াকরণ---এসবের চর্চা অচিন্তনীয়। জ্ঞানের বৈচিত্রময় সব শাখায় হিলবার্ট জগতের মত শুধুমাত্র একটি গাণিতিক সংগঠনের এই সাধারণ ও সার্বিক ব্যবহার ফাংশনাল বিশ্লেষণের একটি নতুন এবং ফলপ্রসূ যুগের সূচনা করেছে।
হিলবার্ট জগতের তাত্ত্বিক আলোচনায় জ্যামিতিক ধারণাগুলি একটি গুরুত্বপূর্ণ ভূমিকা পালন করে। কার্তেসীয় তলের মত হিলবার্ট জগতেও প্রতিটি উপাদানকে একটি অভিলম্বিক ভিত্তি সেটের সাপেক্ষে অদ্বিতীয়ভাবে নির্ধারণ করা যায়। এই ভিত্তি সেটের আরেকটি বৈশিষ্ট্য হল এটি গণনযোগ্যভাবে অসীম, যার ফলে এর উপাদানগুলিকে একটি বর্গসমষ্টিযোগ্য অসীম ধারা হিসেবে কল্পনা করা যায়। হিলবার্ট জগতের রৈখিক অপারেটরগুলিও যথেষ্ট সুসংহত গাণিতিক অপারেশন---বেশিরভাগ সময়ই এরা আসলে কিছু রূপান্তর প্রক্রিয়া যাদের ক্রিয়ায় জগতটি পারস্পরিক অভিলম্বিক একাধিক দিগাক্ষ বরাবর বিভিন্ন গুণিতক হারে প্রসারিত হয়।
সংজ্ঞা
সারাংশ
প্রসঙ্গ
সংক্ষেপে হিলবার্ট জগৎ হল একটি মেট্রিক্স জগৎ যেটা সম্পূর্ণ [১]।
আরও বিশদভাবে বললে হিলবার্ট জগৎ হল একটি ভেক্টর জগৎ যেখানে অন্তঃগুণজ এমনভাবে সংজ্ঞায়িত যেন এই জগতের কোন ভেক্টরের দৈর্ঘ্য বা নর্ম নিচের সমীকরণের সাহায্যে নির্ণয় করা যায়:
- :
এ ধরনের অন্তঃগুণজ (যার সাহায্যে ভেক্টরের নর্ম সংজ্ঞায়িত হয়) থাকার কারণে হিলবার্ট জগতকে সম্পূর্ণ মেট্রিক জগৎ বলা হয়। যদি নর্ম দ্বারা সংজ্ঞায়িত এই মেট্রিক সম্পূর্ণ না হয়, তবে -কে শুধু অন্তঃগুণজ জগৎ বলা হয়।
উদাহরণ
সসীম মাত্রিক হিলবার্ট জগৎ
নিচে সসীম মাত্রিক হিলবার্ট জগতের কিছু উদাহরণ দেয়া হল:
- বাস্তব সংখ্যার ভেক্টর জগৎ , যেখানে হচ্ছে u এবং v এর ভেক্টর ডট গুনন। উল্লেখ্য এখানে u এবং v দুইটি n-মাত্রিক ভেক্টর। n = 3 হলে এই জগৎ আমাদের পরিচিত ইউক্লিডীয় জগতে পরিণত হয়।
- জটিল সংখ্যার ভেক্টর জগৎ , যেখানে হচ্ছে v এবং u এর জটিল অনুবন্ধীর মধ্যে ডট গুণন। উল্লেখ্য, এখানে u এবং v হচ্ছে দুইটি n-মাত্রিক ভেক্টর। এবং u-এর জটিল অনুবন্ধী হল এমন একটি ভেক্টর যার প্রতিটি i-তম উপাদান আনুষঙ্গিক u ভেক্টরের i-তম উপাদানের জটিল অনুবন্ধী।
অসীম মাত্রিক হিলবার্ট জগৎ
একটি জগতকে অসীম মাত্রার হিলবার্ট জগতের একটি উদাহরণ হিসেবে গণ্য করা যায়। এখানে হল আকারের এমন সব ফাংশন যেন সম্পূর্ণ বাস্তব সংখ্যারেখা বরাবর এর যোগজ একটি সসীম সংখ্যা। এক্ষেত্রে অন্তঃগুণজটি এরকম:
সব হিলবার্ট জগতই বানাখ জগৎ কিন্তু সব বানাখ জগৎ হিলবার্ট জগৎ নয়।
উদ্দেশ্য
সারাংশ
প্রসঙ্গ
সাধারণ ইউক্লিডীয় জগৎ R3-কে হিলবার্ট জগতের একটা সীমিত মডেল হিসাবে দেখা যেতে পারে। ইউক্লিডীয় জগতে দুইটি বিন্দুর মধ্যে দূরত্ব এবং দুইটি ভেক্টরের মধ্যকার কোণকে যথাক্রমে ভেক্টর ডট গুণন এবং নির্দিষ্ট এক ধরনের দ্বিরৈখিক অপারেশন হিসাবে গণ্য করা যায়, যেখানে অপারেশনের ফলাফল বাস্তব সংখ্যা। বিশ্লেষণী জ্যামিতির বিভিন্ন সমস্যাকে (যেমন, "কখন দুইটি রেখা পরস্পর লম্ব?" অথবা "কোন বিন্দুটি মূলবিন্দুর সবচেয়ে নিকটে?") ডট গুণন আকারে প্রকাশ এবং সমাধান করা সম্ভব।
আধুনিক গণিতের একটা গুরুত্বপূর্ণ অন্তর্দৃষ্টি হচ্ছে ইউক্লিডীয় জ্যামিতির বিভিন্ন ধারণা অন্য অনেক সমস্যা সমাধানের কাজে ব্যবহার করা যায়। যেসব সমস্যা অনেকসময় এমনকি কোন ধরনের জ্যামিতি থেকেও উৎসারিত নয়, সেগুলিও। হিলবার্ট জগতের মৌলিক উপাদান হচ্ছে ভেক্টরের বিমূর্ত ধারণা; যতক্ষণ এসব ভেক্টরে হিলবার্ট জগতের স্বীকার্যসমূহ মেনে চলে ততক্ষণ তাদের প্রকৃতি এখানে গুরুত্বপূর্ণ। যেমন হয়ত কোন এক ধরনের হিলবার্ট জগতের ভেক্টরসমূহ আসলে অনেকগুলি ফাংশনের একটা ধারা। এখানে (হিলবার্ট জগতে) এসব বিমূর্ত ভেক্টরকে পরস্পর যোগ করা যায়। কোন একটা স্কেলার দিয়ে গুণ করা যায়। অথবা পরস্পরের সাথে ডট গুণন করা যায়। অর্থাৎ এই স্কেলার গুণন, ডট গুণন এবং যোগ অপারেশন তিনটি তাদের জন্য সংজ্ঞায়িত। হিলবার্ট জগতের এইসব বীজগাণিতিক অপারেশনের কিছু পরিচিত বৈশিষ্ট্য হচ্ছে এরা বিনিমেয় এবং বন্টনযোগ্য। এছাড়াও সম্পূর্ণতার কারিগরি প্রয়োজনীয়োতা নিশ্চিত করে যে এই জগতে নির্দিষ্ট সীমার অস্তিত্ব আছে। এই শেষ প্রয়োজনীয়তাটি সসীম মাত্রিক অন্তঃগুণজ জগতের জন্য এমনিতেই সবসময় সত্য হয়। কিন্তু অন্যান্য আরো অনেক সাধারণ ক্ষেত্রে (যেমন অসীম মাত্রিক , ফাংশনাল জগৎ, ইত্যাদিতে) এটিকে একটা অতিরিক্ত স্বীকার্য হিসাবে ধরে নেওয়া হয়।
যদিও বিভিন্ন সঙ্গতি স্বীকার্যের জন্য হিলবার্ট জগতের সংজ্ঞা বেশ জটিল মনে হয়, তা সত্ত্বেও হিলবার্ট জগতের প্রাথমিক স্বজ্ঞা আশ্চর্যজনক রকমের সরল:
- অনেক ধরনের ভৌত এবং গাণিতিক অবস্থায়, একটা রৈখিক সমস্যাকে নির্দিষ্ট হিলবার্ট জগতের সাহায্যে প্রকাশ করে কিছু সরল জ্যামিতিক পদ্ধতিতে বিশ্লেষণ করা সম্ভব।
বিশেষভাবে বলতে গেলে আংশিক অন্তরক সমীকরণ, যোগজ সমীকরণ এবং আইগেন মান সংক্রান্ত সমস্যাসমূহের সমাধানে এই নীতি চমৎকারভাবে প্রয়োগ করা হয়। জোসেফ ফুরিয়ে-র তাপগতিবিদ্যার গাণিতিক তত্ত্বে এই ধরনের বিশ্লেষণের প্রথম উদাহরণ দেখা যায়। তার এই বিশ্লেষণী তত্ত্বমতে তাপ সমীকরণের যেকোন সমাধানকে অসীম সংখ্যক স্বাধীন অংশে বিশ্লিষ্ট করা যায়, যা R3-এর একটি ভেক্টরকে তিনটি উল্লম্ব ভেক্টরের রৈখিক সমাবেশ আকারে প্রকাশ করার প্রক্রিয়ার সাথে তুলনীয়। গাণিতিক পদার্থবিজ্ঞানের অন্য অনেক সমীকরণ যেমন তরঙ্গ সমীকরণ এবং হেল্মহোল্ৎস সমীকরণকেও এভাবে বিশ্লেষণ করা সম্ভব।
হিলবার্ট জগতের তত্ত্বের এই সফলতার পিছনে যে আশ্চর্যজনক সত্যটি লুকিয়ে আছে তা হল:
- যদিও পদার্থবিজ্ঞান এবং গণিতে আলোচ্য বিভিন্ন হিলবার্ট জগতের প্রকাশ ভিন্ন, অথবা তারা ভিন্ন ভিন্ন উৎস থেকে উৎসারিত, তা সত্ত্বেও তারা আসলে একটা নির্দিষ্ট ধরনের বিচ্ছেদ্য হিলবার্ট জগৎ।
অদ্বিতীয়তা মূলনীতির কারণে বিমূর্তভাবে বর্ণিত একটি উপপাদ্য যে কোন একটি হিলবার্ট জগতের ক্ষেত্রে সত্য হলে অন্য সকল হিলবার্ট জগতের জন্যও সত্য হয়।
প্রয়োগ
কোয়ান্টাম মেকানিক্স প্রথম স্বীকার্যটি হিলবার্ট জগতের ব্যবহারিক প্রয়োজনীয়তা বোঝাতে সহায়ক হতে পারে।
- স্বীকার্য #১: যেকোন বিচ্ছিন্ন ভৌত সিস্টেমকে অন্তঃগুণজ-সহ একটি জটিল ভেক্টর জগৎ (তথা একটি হিলবার্ট জগৎ)-এর মাধ্যমে প্রকাশ করা যায়। এমতাবস্থায় ভৌত সিস্টেমটিকে একটি অবস্থা ভেক্টর দিয়ে সম্পূর্ণরূপে বর্ণিত করা সম্ভব, যেখানে অবস্থা ভেক্টরটি হিলবার্ট জগতের একটি একক ভেক্টর [২]।
পাদটীকা
পরিশিষ্ট
Wikiwand - on
Seamless Wikipedia browsing. On steroids.