সাইন ও কোসাইন

কোণের ত্রিকোণমিতিক অপেক্ষক উইকিপিডিয়া থেকে, বিনামূল্যে একটি বিশ্বকোষ

সাইন ও কোসাইন

গণিতে সাইনকোসাইন হলো কোণের ত্রিকোণমিতিক অপেক্ষক। এটি সমকোণী ত্রিভুজের সাহায্যে বোঝানো হয়। কোনো কোণ এর জন্য উহার সাইন অপেক্ষককে ও কোসাইন অপেক্ষককে দ্বারা লেখা হয়।[]

দ্রুত তথ্য সাইন ও কোসাইন, সাধারণ তথ্যসমূহ ...
সাইন ও কোসাইন
সাধারণ তথ্যসমূহ
সূত্র
প্রয়োগত্রিকোণমিতি প্রভৃতি
বন্ধ

আরো সাধারণভাবে, সাইন এবং কোসাইনের সংজ্ঞা একটি একক বৃত্তের নির্দিষ্ট রেখার অংশের দৈর্ঘ্যের পরিপ্রেক্ষিতে যেকোনো বাস্তব সংখ্যায় প্রসারিত করা যেতে পারে। আরও আধুনিক সংজ্ঞাগুলি সাইন এবং কোসাইনকে অসীম সিরিজ হিসাবে বা নির্দিষ্ট অন্তরজ সমীকরণের সমাধান হিসাবে প্রকাশ করে, যা তাদের বিস্তৃতিকে নির্বিচারে ধনাত্মক এবং ঋণাত্মক মান এবং এমনকি জটিল সংখ্যাতেও অনুমতি দেয়।

সাইন এবং কোসাইন ফাংশনগুলি সাধারণত পর্যায়ক্রমিক ঘটনা যেমন শব্দ এবং আলোক তরঙ্গ, সুরেলা দোলকের অবস্থান এবং বেগ, সূর্যালোকের তীব্রতা এবং দিনের দৈর্ঘ্য এবং সারা বছরের গড় তাপমাত্রার তারতম্যের মডেল করতে ব্যবহৃত হয়। গুপ্ত যুগে ভারতীয় জ্যোতির্বিদ্যায় ব্যবহৃত জ্যা, কোটি-জ্যা এবং উত্ক্রম-জ্যা এবং ফাংশনগুলির মধ্যে এগুলি সনাক্ত করা যেতে পারে।

সংক্ষেপ

সারাংশ
প্রসঙ্গ

সাইন এবং কোসাইন সংক্ষেপে sin এবং cos সহ ফাংশন নোটেশন ব্যবহার করে লেখা হয়। প্রায়শই, যদি যুক্তিটি যথেষ্ট সহজ হয়, তাহলে ফাংশনের মানটি বন্ধনী ছাড়া লেখা হবে, sin(θ) এর পরিবর্তে sin θ হিসাবে।

সাইন এবং কোসাইন প্রতিটি একটি কোণের একটি ফাংশন, যা সাধারণত রেডিয়ান বা ডিগ্রী দ্বারা প্রকাশ করা হয়।

সমকোণী ত্রিভুজের সংজ্ঞা

Thumb
চিত্রের সমকোণী ত্রিভুজের α (আলফা) কোণটির জন্য সাইন ফাংশন কোণটির বিপরীত বাহুর দৈর্ঘ্য এবং অতিভুজের দৈর্ঘ্যের অনুপাত প্রদান করে; অর্থাৎ sine (α) = a/h।

একটি তীব্র কোণ α-এর সাইন এবং কোসাইনকে সংজ্ঞায়িত করতে, একটি সমকোণী ত্রিভুজ দিয়ে শুরু করুন যাতে একটি পরিমাপের কোণ α থাকে; সহগামী চিত্রে, ত্রিভুজ ABC-এ কোণ α হল আগ্রহের কোণ। ত্রিভুজের তিনটি বাহুর নাম নিম্নরূপ:

  • বিপরীত দিক হল আগ্রহের কোণের বিপরীত দিক, এই ক্ষেত্রে  a
  • কর্ণ হল সমকোণের বিপরীত দিক, এই ক্ষেত্রে  h। কর্ণ সর্বদা একটি সমকোণী ত্রিভুজের দীর্ঘতম বাহু।
  • সংলগ্ন দিক হল অবশিষ্ট দিক, এই ক্ষেত্রে  b। এটি আগ্রহের কোণ (কোণ A) এবং সমকোণ উভয়েরই একটি দিক (এবং সংলগ্ন) গঠন করে।

এই ধরণের ত্রিভুজে সেই কোণের (α) সাইন হল বিপরীত দিক ও কর্ণের দৈর্ঘ্যের অনুপাত:[]

কোণের অন্যান্য ত্রিকোণমিতিক ফাংশন একইভাবে সংজ্ঞায়িত করা যেতে পারে; যেমন ট্যানজেন্ট হল বিপরীত দিক ও সংলগ্ন দিকের দৈর্ঘ্যের অনুপাত । যেমন বলা হয়েছে, এবং পরিমাপের একটি কোণ α সমন্বিত সমকোণী ত্রিভুজের পছন্দের উপর নির্ভর করে বলে মনে হয়। কিন্তু, এটি এমন নয়: এই জাতীয় সমস্ত ত্রিভুজ একই রকম, এবং তাই তাদের প্রতিটির অনুপাত একই।

অভেদাবলী

সারাংশ
প্রসঙ্গ

পূরক কোণ

-র সকল মানের জন্য প্রযোজ্য।

অন্যোন্যক

সাইনের অন্যোন্যক হল কোসেকান্ট (cosecant) ও কোসাইনের ক্ষেত্রে সেকান্ট (secant), যা সংক্ষেপে cosec বা csc এবং sec দ্বারা প্রকাশ করা হয়।

কলনবিদ্যা

অবকলন

সমাকলন

C হল সমাকল ধ্রুবক

পিথাগোরাসের ত্রিকোণমিতিক উপপাদ্য

পিথাগোরাসের ত্রিকোণমিতিক উপপাদ্যতে বলা হয়েছে যে:

যেখানে sin2(x) মানে [sin(x)]2

দ্বিগুণ কোণ

এখান থেকে sin2θ ও cos2θ পাওয়া যায়:[]

Thumb
নীল রঙ সাইন অপেক্ষকের লেখচিত্র ও লাল রঙ সাইন অপেক্ষকের বর্গের লেখচিত্র নির্দেশ করে। X অক্ষে কোণের মান রেডিয়ানে।

পাদের সাথে সম্পর্ক

Thumb
কার্তেসীয় স্থানাঙ্ক জ্যামিতির চারটি পাদ

সাইন অপেক্ষকের পর্যাবৃত্ততা মেনে চলে যে সমীকরণ:

আরও তথ্য , ...
পাদ কোণ সাইন (sin) কোসাইন (cos)
ডিগ্রি রেডিয়ান চিহ্ন একমুখিতা উত্তলতা চিহ্ন একমুখিতা উত্তলতা
প্রথম পাদ, I বৃদ্ধিশীল অবতল হ্রাসশীল অবতল
দ্বিতীয় পাদ, II হ্রাসশীল অবতল হ্রাসশীল উত্তল
তৃতীয় পাদ, III হ্রাসশীল উত্তল বৃদ্ধিশীল উত্তল
চতুর্থ পাদ, IV বৃদ্ধিশীল উত্তল বৃদ্ধিশীল অবতল
বন্ধ
Thumb
একক বৃত্ত ও sin(x) এর পাদসমূহ, কার্তেসীয় স্থানাংক ব্যবস্থার সাহায্যে।
আরও তথ্য , ...
ডিগ্রি রেডিয়ান
মান বিন্দুর প্রকৃতি মান বিন্দুর প্রকৃতি
বীজ, ইনফ্লেকশন সর্বোচ্চ
সর্বোচ্চ বীজ, ইনফ্লেকশন
বীজ, ইনফ্লেকশন সর্বনিম্ন
সর্বনিম্ন বীজ, ইনফ্লেকশন
বন্ধ

শ্রেণী ও প্রগতি

সারাংশ
প্রসঙ্গ

ঘাতে লেখা সংখ্যা বারংবার অবকলন বোঝায়।

টেলর ধারা অনুযায়ী,


চলমান ভগ্নাংশ

সাইন অপেক্ষক সাধারণ চলমান ভগ্নাংশ দ্বারাও চিহ্নিত করা হয়:


সাইনের নিয়ম

এই নিয়ম বলে যে, a,b,c বাহুবিশিষ্ট কোনো ত্রিভুজ এবং উহাদের বিপরীত কোণত্রয় যথাক্রমে A,B,C হলে:

যেখানে R ত্রিভুজের পরিব্যাসার্ধ

কোসাইনের নিয়ম

এই নিয়ম বলে যে, a,b,c বাহুবিশিষ্ট কোনো ত্রিভুজ এবং উহাদের বিপরীত কোণত্রয় যথাক্রমে A,B,C হলে:

এক্ষেত্রে, এবং হলে, এটি পিথাগোরাসের উপপাদ্যকে বোঝায়। যেখানে c অতিভুজ।

কিছু মান

সারাংশ
প্রসঙ্গ
Thumb
কিছু সাধারণ কোন (θ) একক বৃত্তে দেখানো হয়েছে। কোণের মান ডিগ্রি ও রেডিয়ানে দেওয়া, (cos(θ), sin(θ)) আকারে মান লেখা
আরও তথ্য , ...
কোণ, x sin(x) cos(x)
ডিগ্রি রেডিয়ান গ্রেডিয়ান ঘূর্ণন ভগ্নাংশ দশমিক ভগ্নাংশ দশমিক
0 0g 0 0 0 1 1
15° +/১২π +১৬/g +/২৪ 0.2588 0.9659
30° +/π +৩৩/g +/১২ +/ 0.5 0.8660
45° +/π 50g +/ 0.7071 0.7071
60° +/π +৬৬/g +/ 0.8660 +/ 0.5
75° +/১২π +৮৩/g +/২৪ 0.9659 0.2588
90° +/π 100g +/ 1 1 0 0
বন্ধ

90° এর গুণিতক কোণগুলির মান:

আরও তথ্য x ডিগ্রিতে, x রেডিয়ানে ...
x ডিগ্রিতে 90°180°270°360°
x রেডিয়ানে 0π/2π3π/2
x গ্রেডিয়ানে 0100g200g300g400g
x ঘূর্ণনে 01/41/23/41
sin x 010−10
cos x 10-101
বন্ধ

জটিল সংখ্যার সাথে সম্পর্ক

সারাংশ
প্রসঙ্গ
Thumb
বাস্তব ও এর অবাস্তব অংশ

অয়লারের সূত্র অনুসারে,

সাইন ও কোসাইন কোনো জটিল সংখ্যার বাস্তব ও অবাস্তব অংশকে পোলার স্থানাংক ব্যবস্থার সাথে সংযুক্ত করে:

এদের বাস্তব ও অবাস্তব অংশ হল:

যেখানে rφ যথাক্রমে জটিল সংখ্যা z এর মান ও কোণকে বোঝায়।

তাই, অয়লারের সূত্র থেকে লেখা যায়,

z এর পোলার স্থানাঙ্ক (r, φ) হলে,

ইতিহাস

সারাংশ
প্রসঙ্গ

জ্যা ফাংশনটি আবিষ্কৃত হয়েছিল নিসিয়ার হিপারকাস (১৮০-১২৫ BCE) এবং রোমান মিশরের টলেমি (৯০-১৬৫ CE) দ্বারা।

সাইন এবং কোসাইন ফাংশনগুলিকে সংস্কৃত থেকে আরবি এবং তারপরে আরবি থেকে ল্যাটিন ভাষায় অনুবাদের মাধ্যমে গুপ্ত যুগে (আর্যভটিয়া এবং সূর্য সিদ্ধান্ত) ভারতীয় জ্যোতির্বিজ্ঞানে ব্যবহৃত জ্যা এবং কোটি-জ্যা ফাংশনগুলি সনাক্ত করা যেতে পারে।

বর্তমান ব্যবহারে সমস্ত ছয়টি ত্রিকোণমিতিক ফাংশন ৯ শতকের মধ্যে ইসলামিক গণিতে পরিচিত ছিল। আল-খওয়ারিজমি সাইন, কোসাইন এবং ট্যানজেন্টের সারণী তৈরি করেছিল। মুহাম্মদ ইবনে জাবির আল-হাররানি আল-বাত্তানি সেকেন্ট এবং কোসেক্যান্টের পারস্পরিক কার্যাবলী আবিষ্কার করেন এবং ১° থেকে ৯০° পর্যন্ত প্রতিটি ডিগ্রির জন্য কোসেক্যান্টের প্রথম সারণী তৈরি করেছিলেন।

১৬ শতকের ফরাসি গণিতবিদ অ্যালবার্ট গিরার্ড দ্বারা সংক্ষেপিত sin, cos এবং tan এর প্রথম ব্যবহার প্রকাশিত ; এগুলি অয়লার দ্বারা প্রচারিত হয়েছিল । কোপার্নিকাসের ছাত্র জর্জ জোয়াকিম, সম্ভবত ইউরোপে প্রথম ব্যক্তি যিনি ত্রিকোণমিতিক ফাংশনকে সরাসরি বৃত্তের পরিবর্তে সমকোণী ত্রিভুজের পরিপ্রেক্ষিতে সংজ্ঞায়িত করেছিলেন, যেখানে ছয়টি ত্রিকোণমিতিক ফাংশনের জন্য টেবিল রয়েছে; ১৫৯৬ সালে রেটিকাসের ছাত্র ভ্যালেন্টিন ওথো এই কাজটি শেষ করেছিলেন।

১৬৮৬ সালে প্রকাশিত একটি গবেষণাপত্রে, লাইবনিজ প্রমাণ করেন যে sin x x এর বীজগণিতিক ফাংশন নয়। রজার কোটস তার হারমোনিয়া মেনসুরারাম (১৭২২) এ সাইনের ডেরিভেটিভ গণনা করেন।

ব্যুৎপত্তি

ব্যুৎপত্তিগতভাবে, সাইন শব্দটি সংস্কৃত শব্দ জ্যা 'bow-string'[] বা আরও নির্দিষ্টভাবে এর প্রতিশব্দ জিভা থেকে এসেছে, আর্কের মধ্যে দৃশ্যমান সাদৃশ্যের কারণে। এটিকে আরবীতে জিবা হিসাবে প্রতিলিপি করা হয়েছিল, যা যদিও সেই ভাষায় অর্থহীন এবং সংক্ষেপে jb (جب)। যেহেতু আরবি ছোট স্বরবর্ণ ছাড়াই লেখা হয়, তাই jb কে হোমোগ্রাফ জাইব, জায়ব (جيب) হিসাবে ব্যাখ্যা করা হয়েছিল, যার অর্থ 'পকেট', 'ভাঁজ'। ক্রেমোনার জেরার্ড যখন আল-বাত্তানি এবং আল-খোয়ারিজমির আরবি গ্রন্থগুলি মধ্যযুগীয় ল্যাটিন ভাষায় অনুবাদ করেছিলেন, তখন তিনি ল্যাটিন সমতুল্য সাইনাস ব্যবহার করেছিলেন যার অর্থ 'বে' বা 'ভাঁজ' ।ইংরেজি ফর্ম সাইন ১৫৯০ সালে চালু করা হয়েছিল।

কোসাইন শব্দটি ল্যাটিন 'সাইন অফ দ্য কমপ্লিমেন্টারি অ্যাঙ্গেল' এর সংক্ষিপ্ত রূপ থেকে এসেছে কোসাইনাস হিসাবে

তথ্যসূত্র

গ্রন্থপঞ্জি

বহিঃসংযোগ

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.