গণিতে কার্তেসীয় স্থানাংক ব্যবস্থা (প্রতিশব্দ "সমকোণী স্থানাংক ব্যবস্থা"), হল আদিবিন্দু (origin) নামে একটি পূর্বনির্দিষ্ট বিন্দুগামী সমকৈণিক অর্থাৎ পরস্পর সমকোণে অবস্থিত পূর্বনির্দিষ্ট সরলরৈখিক অক্ষগুলি (দ্বিমাত্রিক হলে দুটি, ত্রিমাত্রিক হলে তিনটি) থেকে একই এককে প্রকাশিত লম্বদূরত্ব দ্বারা কোন বিন্দুর অবস্থান বোঝানোর ব্যবস্থা। এই ব্যবস্থায়, বন্ধনীর মধ্য একটি পূর্বনির্দিষ্ট ক্রমে এই দূরত্বগুলির মান লিখে স্থানাঙ্ক প্রকাশ করা হয়।
সপ্তদশ শতকে রেনে দেকার্ত এই ব্যবস্থার প্রবর্তন করে ইউক্লিডীয় জ্যামিতিকে বীজগণিতের সঙ্গে সংযুক্ত করে এক গাণিতিক বিপ্লব ঘটান। কার্তেসীয় স্থানাংক ব্যবস্থা ব্যবহার করে জ্যামিতিক চিত্রগুলোকে (যেমন: বৃত্ত) বীজগাণিতিক সমীকরণে প্রকাশ করা যায়। উদাহরণস্বরূপ, 2 একক ব্যাসার্ধ বিশিষ্ট একটি একটি বৃত্তকে x2+y2=4 সমীকরণের মাধ্যমে দেখানো যায়।
কার্তেসীয় স্থানাংক ব্যবস্থা হলো স্থানাঙ্ক জ্যামিতির ভিত্তিস্বরূপ। এছাড়াও জ্যোতির্বজ্ঞান, পদার্থবিজ্ঞান ও এবং বিজ্ঞানের আরো অনেক শাখায় এটির ব্যবহার রয়েছে। যেমন: পদার্থবিজ্ঞানে কোন বস্তুর বেগ বনাম সময় লেখচিত্র আঁকতে কার্তেসীয় স্থানাংক ব্যবস্থা ব্যবহার করা হয়।
ইতিহাস
গণিতবিদ এবং দার্শনিক রেনে দেকার্তের নামানুসারে কার্তেসীয় স্থানাঙ্ক ব্যবস্থার নামকরণ করা হয়েছে। 1637 সালে সর্বপ্রথম এটির ধারণা দেন। ফরাসি গণিতবিদ পিয়ের দ্য ফের্মা আলাদাভাবে এটি আবিষ্কার করেন। ত্রিমাত্রিক বস্তু সম্পর্কেও তার কাজ ছিল।[১] ফরাসি দার্শনিক নিকলে অর্সম দেকার্তে এবং ফের্মার পূর্বেই এ বিষয়ের অনুরূপ চিত্র এঁকেছেন। [২]
দেকার্তে এবং ফের্মা উভয়েই শুধুমাত্র একটি অক্ষ ব্যবহার করেছেন। একজোড়া অক্ষ ব্যবহার করার ধারণা পরবর্তীতে প্রদান করা হয়।
কার্তেসীয় স্থানাঙ্ক ব্যবস্থা আইজ্যাক নিউটন এবং লিবনিজ এর দ্বারা ক্যালকুলাস আবিষ্কারে মুখ্য ভূমিকা রাখে। দেকার্তের পর আরও অনেক স্থানাঙ্ক ব্যবস্থা গড়ে ওঠে। যেমন: সমতলের জন্য পোলার স্থানাঙ্ক ব্যবস্থা, ভৌগোলিক স্থানাঙ্ক ব্যবস্থা ইত্যাদি।
স্থানাংকের অক্ষ
কার্তেসীয় স্থানাংক ব্যবস্থায় কোন বিন্দুকে ব্র্যাকেট এর মধ্যে লিখে প্রকাশ করা হয় এবং দুটি বিন্দুর মাঝে কমা ব্যবহার করা হয়। যেমন: (5,3) ইত্যাদি। X অক্ষ এবং Y অক্ষ যে বিন্দুতে ছেদ করে তাকে মুলবিন্দু (Origin Point) বলে। মূলবিন্দুকে ইংরেজি বড় হাতের অক্ষর O দ্বারা প্রকাশ করা হয়। স্থানাঙ্ক জ্যামিতিতে কোন অজানা বিন্দুকে দ্বিতীয় মাত্রায় (x,y) এবং তৃতীয় মাত্রায় (x,y,z) ধরা হয়। বীজগণিতের মতোই অজানা বিন্দুর জন্য বর্নমালার শেষ অক্ষরগুলো এবং জানা বিন্দুর জন্য বর্নমালার প্রথম বর্নগুলো ব্যবহার করা হয়।
পদার্থবিজ্ঞান কিংবা প্রকৌশলের ক্ষেত্রে অক্ষগুলোকে সুবিধামত অক্ষর দিয়েও নামকরণ করতে দেখা যায় যেমন: সময়ের সাপেক্ষে চাপের পরিবর্তনের লেখচিত্রে সময়ের অক্ষকে t এবং চাপের অক্ষকে p দ্বারা প্রকাশ করা যায়।
দ্বিমাত্রিক কার্তেসীয় তলে প্রথম অক্ষে বাম থেকে ডানে বিন্দুসমূহকে বসানো হয়। এই অক্ষকে বলে ভূজ। দ্বিতীয় অক্ষে উপর থেকে নিচে বিন্দুসমুহকে বসানো হয়। এই অক্ষকে কটি বলে।
তথ্যসূত্র
পাদটীকা
গ্রন্থপঞ্জি
বহিঃসংযোগ
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.