From Wikipedia, the free encyclopedia
Статистическата сума (обикновено се отбелязва със Z, от нем. – Zustandssumme) е величина в статистическата физика, която съдържа информация за физичните свойства на система в състояние на термодинамично равновесие. Статистическата сума е функция на температурата и други параметри на системата, като например обем или химичен потенциал. Много от термодинамичните величини на системата, като енергия, свободна енергия, ентропия, налягане, могат да бъдат изразени чрез статистическата сума или нейните производни[1][2].
Серия статии на тема Статистическа физика |
Формализъм
Статистически ансамбли
микроканоничен ⋅ каноничен ⋅ голям каноничен
Квантови статистики
Потенциали
Вътрешна енергия ⋅ Свободна енергия на Хелмхолц ⋅ Свободна енергия на Гибс ⋅ Енталпия ⋅ Свободна енталпия ⋅ Ентропия
Газове от частици
Известни модели
|
На различните статистически ансамбли съответстват различни статистически суми. Каноничната статистическа сума отговаря на каноничния ансамбъл, в който системата може да обменя с обкръжаващата среда топлина при постоянни температура, обем и брой частици. Голямата канонична статистическа сума съответства на големия каноничен ансамбъл, при който системата може да обменя с обкръжаващата среда топлина и частици при постоянни температура, обем и химичен потенциал.
В каноничния ансамбъл системата е в равновесие с околната среда при температура T и броят частици в системата и нейният обем са постоянни. Нека обозначим с s (s= 1,2,3,...) собствените квантови състояния на системата, а с Еs енергията на системата, когато се намира в собствено състояние s. (Енергиите Еs са собствените стойности на квантовия Хамилтонов оператор на системата съответстващи на собствените квантови състояния s). Чрез ентропичен аргумент може да се покаже[2], че вероятността системата да е в дадено микросъстояние s:
където Т е температурата, kB е константата на Болцман, a нормиращата постоянна
е каноничната статистическа сума. В последното уравнение H е квантовият оператор на Хамилтон, а tr(exp(-βH)) обозначава следата на оператора exp(-βH).
Горното определение за статистическата сума е валидно за квантова система с дискретни квантови състояния. Съответното определение в класическата статистическа механика за система съставена от N идентични частици е:
където и са триизмерни вектори съответстващи на импулса и позицията на частица i, h е константата на Планк, H e класическият оператор на Хамилтон, а интегралът покрива цялото фазово пространство на системата. Гибсовият фактор N! е нужен, поради неразличимостта на частиците. Изключването му от израза би довело до парадокса на Гибс.
По принцип познаването на статистическата сума позволява да бъдат изчислени всички термодинамични функции на системата. Ентропията може да бъде изчислена от вероятностите ps:
където β=1/kBT e обратната температура, a U е вътрешната енергия на системата:
От по-горното уравнение непосредствено следва, че свободната енергия и статистическата сума са свързани по следния начин:
Това е фундаментална формула за термодинамичните приложения на разпределението на Гибс.
В големия каноничен ансамбъл системата може да обменя частици както и топлина с околната среда при фиксирани температура T и химичен потенциал μ. Вероятността системата да е в дадено микросъстояние е:
Голямата статистическата сума е
Ентропията е:
От това непосредствено следва, че връзката между големия потенциал и голямата статистическа сума е:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.