Loading AI tools
من ويكيبيديا، الموسوعة الحرة
في الهندسة الإقليدية، المضلع المنتظم (بالإنجليزية: Regular polygon) هو كل مضلع بسيط جميع زواياه متساوية في القياس.[1][2][3] من الممكن أن يكون المضلع المنتظم محدباً أو نجمياً، النجمة الخماسية مثالا.
كون أضلاع متعدد أضلاع متساويةً في القياس لا يجعمل منه متعدد أضلاع منتظم، بل يجعل منه مضلعا متساوي الأضلاع. الصنفان مختلفان. المعين على سبيل المثال، هو رباعي أضلاع متساوي الأضلاع وليس بمضلع منتظم.
هذه الخصائص تنطبق على المضلعات المحدبة والنجمية:
انظر إلى زمرة التماثل.
عدد الأضلاع | قياس الزاوية الداخلية | مجموع قياسات الزوايا الداخلية |
---|---|---|
10 | ||
من أجل n>2، عدد الأقطار هو ، يمكن رسم قطر من كل رأس، تقسم الأقطار من الرأس الواحد المضلع إلى مثلث.
عدد الأضلع |
المساحة عندما يساوي الضلع واحدا s=1 | المساحة عندما يساوي شعاع الدائرة المحيطة واحدا R=1 | المساحة عندما تساوي المسافة الفاصلة بين مركز المضلع وأحد أضلعه واحدا a=1 | |||||
---|---|---|---|---|---|---|---|---|
قيمة دقيقة | قيمة مقربة | قيمة دقيقة | قيمة مقربة | Approximate as fraction of circumcircle area |
قيمة دقيقة | قيمة مقربة | Approximate as fraction of incircle area | |
n | ||||||||
3 | √3/4 | 0.433012702 | 3√3/4 | 1.299038105 | 0.4134966714 | 3√3 | 5.196152424 | 1.653986686 |
4 | 1 | 1.000000000 | 2 | 2.000000000 | 0.6366197722 | 4 | 4.000000000 | 1.273239544 |
5 | 1/4√25+10√5 | 1.720477401 | 5/4√(5+√5)/2 | 2.377641291 | 0.7568267288 | 5√5-2√5 | 3.632712640 | 1.156328347 |
6 | 3√3/2 | 2.598076211 | 3√3/2 | 2.598076211 | 0.8269933428 | 2√3 | 3.464101616 | 1.102657791 |
7 | 3.633912444 | 2.736410189 | 0.8710264157 | 3.371022333 | 1.073029735 | |||
8 | 2+2√2 | 4.828427125 | 2√2 | 2.828427125 | 0.9003163160 | 8(√2-1) | 3.313708500 | 1.054786175 |
9 | 6.181824194 | 2.892544244 | 0.9207254290 | 3.275732109 | 1.042697914 | |||
10 | 5/2√5+2√5 | 7.694208843 | 5/2√(5-√5)/2 | 2.938926262 | 0.9354892840 | 2√25-10√5 | 3.249196963 | 1.034251515 |
11 | 9.365639907 | 2.973524496 | 0.9465022440 | 3.229891423 | 1.028106371 | |||
12 | 6+3√3 | 11.19615242 | 3 | 3.000000000 | 0.9549296586 | 12(2-√3) | 3.215390309 | 1.023490523 |
13 | 13.18576833 | 3.020700617 | 0.9615188694 | 3.204212220 | 1.019932427 | |||
14 | 15.33450194 | 3.037186175 | 0.9667663859 | 3.195408642 | 1.017130161 | |||
15 | 17.64236291 | 3.050524822 | 0.9710122088 | 3.188348426 | 1.014882824 | |||
16 | 4 (1+√2+√2 (2+√2)) | 20.10935797 | 4√2-√2 | 3.061467460 | 0.9744953584 | 16 (1+√2)(√2 (2-√2)-1) | 3.182597878 | 1.013052368 |
17 | 22.73549190 | 3.070554163 | 0.9773877456 | 3.177850752 | 1.011541311 | |||
18 | 25.52076819 | 3.078181290 | 0.9798155361 | 3.173885653 | 1.010279181 | |||
19 | 28.46518943 | 3.084644958 | 0.9818729854 | 3.170539238 | 1.009213984 | |||
20 | 5 (1+√5+√5+2√5) | 31.56875757 | 5/2 (√5-1) | 3.090169944 | 0.9836316430 | 20 (1+√5-√5+2√5) | 3.167688806 | 1.008306663 |
100 | 795.5128988 | 3.139525977 | 0.9993421565 | 3.142626605 | 1.000329117 | |||
1000 | 79577.20975 | 3.141571983 | 0.9999934200 | 3.141602989 | 1.000003290 | |||
10,000 | 7957746.893 | 3.141592448 | 0.9999999345 | 3.141592757 | 1.000000033 | |||
1,000,000 | 79577471545 | 3.141592654 | 1.000000000 | 3.141592654 | 1.000000000 |
بعض المضلعات المنتظمة قابلة للإنشاء بالمسطرة والفرجار بسهولة وبعضها غير قابل للإنشاء بالمسطرة والفرجار بتاتا، سباعي الأضلع مثالا.
علم علماء الرياضيات الإغريق كيفية إنشاء مضلعات منتظمة عدد أضلاعهن الثلاثة والأربعة والخمسة، كما علموا إنشاء مضلع منتظم عدد أضلاعه ضعف عدد أضلاع مضلع منتظم معلوم. أدى بهم ذلك إلى طرح السؤال التالي:
في عام 1796، برهن كارل فريدريش غاوس على قابلية إنشاء مضلع منتظم عدد أضلاعه سبعة عشر. بعد ذلك بخمس سنوات طور نظرية المعروفة باسم الدورة الغاوسية في كتابه استفسارات حسابية. هذه النظرية مكنته من إعطاء شرط كاف لقابلية الإنشاء وهو كما يلي:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.