أفضل الأسئلة
الجدول الزمني
الدردشة
السياق

مضلع منتظم

من ويكيبيديا، الموسوعة الحرة

مضلع منتظم
Remove ads

في الهندسة الإقليدية، المضلع المنتظم (بالإنجليزية: Regular polygon) هو كل مضلع بسيط جميع زواياه متساوية في القياس.[1][2][3] من الممكن أن يكون المضلع المنتظم محدباً أو نجمياً، النجمة الخماسية مثالا.

Thumb
مضلع منتظم سباعي الأضلاع .

كون أضلاع متعدد أضلاع متساويةً في القياس لا يجعمل منه متعدد أضلاع منتظم، بل يجعل منه مضلعا متساوي الأضلاع. الصنفان مختلفان. المعين على سبيل المثال، هو رباعي أضلاع متساوي الأضلاع وليس بمضلع منتظم.

Remove ads

خصائص عامة

هذه الخصائص تنطبق على المضلعات المحدبة والنجمية:

التماثل

انظر إلى زمرة التماثل.

Remove ads

المضلعات المنتظمة المحدبة

الزوايا

مزيد من المعلومات , ...

الأقطار

من أجل n>2، عدد الأقطار هو ، يمكن رسم قطر من كل رأس، تقسم الأقطار من الرأس الواحد المضلع إلى مثلث.

المساحة

مزيد من المعلومات , ...
Remove ads

المضلعات القابلة للإنشاء

الملخص
السياق

بعض المضلعات المنتظمة قابلة للإنشاء بالمسطرة والفرجار بسهولة وبعضها غير قابل للإنشاء بالمسطرة والفرجار بتاتا، سباعي الأضلع مثالا.

علم علماء الرياضيات الإغريق كيفية إنشاء مضلعات منتظمة عدد أضلاعهن الثلاثة والأربعة والخمسة، كما علموا إنشاء مضلع منتظم عدد أضلاعه ضعف عدد أضلاع مضلع منتظم معلوم. أدى بهم ذلك إلى طرح السؤال التالي:

هل جميع المضلعات المنتظمة قابلة للإنشاء مهما كان عدد أضلاعهن ؟ وإذا كان الجواب بالنفي، فما هن المضلعات القابلة للإنشاء وما هن المضلعات غير ذلك ؟

في عام 1796، برهن كارل فريدريش غاوس على قابلية إنشاء مضلع منتظم عدد أضلاعه سبعة عشر. بعد ذلك بخمس سنوات طور نظرية المعروفة باسم الدورة الغاوسية في كتابه استفسارات حسابية. هذه النظرية مكنته من إعطاء شرط كاف لقابلية الإنشاء وهو كما يلي:

يكون مضلع منتظم عدد أضلاعه يساوي n قابلا للإنشاء بالفرجار والمسطرة إذا كان عدد أضلاعه هذا جداءا لقوة ما لاثنين من جهة وعدد معين من أعداد فيرما الأولية، مختلفةً عن بعضها البعض من جهة ثانية (بما في ذلك الحالة حيث يكون عددهن مساويا للصفر).
على سبيل المثال، 17 هو عدد أولي لفيرما، 1 هو قوة لاثنين من الدرجة الصفر. هذا جعل مضلعا منتظما عدد أضلاعه سبعة عشر قابلا للإنشاء.
على سبيل المثال الثاني، 8 هو قوة لاثنين من الدرجة الثالثة. هذا يجعل من ثماني أضلاع منتظم قابلا للاإنشاء بالمسطرة والبركار (الحالة حيث يكون عدد أعداد فيرما الأولية في الجداء المذكور أعلاه مساويا للصفر).

انظر أيضا

مراجع

Loading content...

وصلات خارجية

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads