Remove ads
保留加法和標量乘法運算的映射 来自维基百科,自由的百科全书
線性映射(英語:linear map)是向量空間之間,保持向量加法和純量乘法的函數。線性映射也是向量空間作為模的同態[1]。
線性算子(英語:linear operator)與線性轉換(英語:linear transformation,又稱線性變換)是與線性映射相關的慣用名詞,但其實際意義存在許多分歧,詳見相關名詞一節。
設 和 都是係數體為 的向量空間, 是一個從 送到 的一個映射。如果 具有以下兩個性質:
則稱 是一個 -線性映射。在係數體不致混淆的情況下也經常簡稱線性映射。
這等價於要求 對任意向量 和任意純量 :
任何的體 本身就是一維的(係數為自身的)向量空間,所以可以考慮任何從係數體同樣為 的向量空間 送往 的線性映射,這類線性映射被稱為線性泛函。研究線性泛函的學科是線性泛函分析,是泛函分析最成熟的分支。
線性變換和線性算子這兩個名詞,與本條目的線性映射密切相關,但不同作者有不同的定義。而這種定義分歧的根源在於,如 這樣,定義域和值域落在同個向量空間的特殊線性映射,有些人為了凸顯而予之不同的稱呼。
比如Axler和龔昇就稱這種特殊線性映射為線性算子[4][5],但另一方面將線性映射和線性變換視為同義詞;李尚志則將這種特殊線性映射稱為線性變換[6];而泛函分析的書籍一般將三者都視為本條目所定義的「線性映射」,其他細節以函數的符號傳達[7][8]。
本條目採用泛函分析的習慣。
假設 是個線性映射,且
分別是 和 的基底。
根據基底 的基本定義,對於每個基向量 ,存在唯一一組純量 使得
直觀上,純量 就是對基向量 的作用結果 ,在基底 下的諸分量。
現在任取一個 裡的向量 ,因為基底 的基本定義,存在唯一一組純量 使得
這樣根據求和符號的性質,可以得到
然後考慮到 ,所以根據基底 的基本定義,存在唯一一組純量 使得
考慮到矩陣乘法的定義,上式可以改寫為
也就是說,只要知道 在 下的諸分量 ,任意向量 的作用結果 ,都可以表示為矩陣 與行向量 的乘積。更直觀的來說,矩陣 就是把 的諸分量沿行(column)擺放所構成的。
由上面的推導可以知道,不同的基底 和 下,矩陣 也不同,為了強調這點,也會將矩陣 記為
來強調這種關聯性。
若 ,在同個向量空間 通常沒有取不同基底的必要,那上面的推導可以在 的前提下進行。這時上式可以進一步簡寫為
若有由 個純量構成的矩陣 ,如果取 為
其中
因為矩陣乘法只有唯一的結果,上面的定義的確符合函數定義的基本要求。然後考慮 和 都可以視為定義在同個純量體 上的向量空間,而且矩陣乘法是線性的,所以上述定義的函數 的確符合線性映射的基本定義。
根据积和余积的泛性质,我们有
在 -线性空间构成的范畴中,有限个线性空间的余积和积是一回事。对于 的基 ,取 ,我们有 ,所以左边的线性映射 就被拆解为了 个 中的元素,这就是线性映射的矩阵表示。
二維空間的線性變換的一些特殊情況有:
兩個線性映射的覆合映射是線性的:如果和是線性的,則也是線性的。
如果和是線性的,則它們的和也是線性的(這是由定義的)。
如果是線性的,而a是基礎體K的一個元素,則定義自 (af)(x) = a (f(x))的映射af也是線性的。
所以從到的線性映射的集合自身形成在上的向量空間,有時指示為。進一步的說,在的情況中,這個向量空間(指示為)是在映射覆合下的結合代數,因為兩個線性映射的覆合再次是線性映射,所以映射的覆合總是結合律的。
給定有限維的情況,如果基已經選擇好了,則線性映射的覆合對應於矩陣乘法,線性映射的加法對應於矩陣加法,而線性映射與純量的乘法對應於矩陣與純量的乘法。
此章节需要扩充。 (2016年6月2日) |
自同態的線性映射在泛函分析和量子力學中都有很重要的地位。按前文約定,我們用“線性算子”來簡稱它。(注意泛函分析中所說的“線性算子”不一定是自同態(endomorphism)映射,但我們為了照顧不同書籍的差異以及敘述的方便,暫用“線性算子”來稱呼這種自同態。)
自同態是一個數學對象到它本身的保持結構的映射(同態),例如群的自同態則是群同態。對於向量空間,其自同態是線性算子;所有這種自同態的集合與如上定義的加法、覆合和純量乘法一起形成一個結合代數,帶有在體上的單位元(特別是一個環)。這個代數的乘法單位元是恒等映射。
若的自同態也剛好是同構則稱之為自同構。兩個自同構的覆合再次是自同構,所以的所有的自同構的集合形成一個群,的自同構群可表為或。因為自同構正好是那些在覆合運算下擁有逆元的自同態,所以也就是在環中的可逆元群。
如果之維度有限同構於帶有在中元素的所有矩陣構成的結合代數,且的自同態群同構於帶有在中元素的所有可逆矩陣構成的一般線性群。
若尔当标准型叙述了代数闭域 上的线性空间 上的自同态 在 的基上的矩阵表示的表现,有理标准型是将其推广到任意域上的方法。
對於一個線性映射 ,可以考慮以下兩個:
那麼 是 的子空間,而 是 的子空間。下面的叫做秩-零化度定理的維度公式經常是有用的:
這個數稱做「 的秩」( rank )並寫成 ,有時也寫成 ;而 這個數則稱做「 的零化度」( nullity )並寫成 。如果 和 是有限維的,那麼 的秩和零化度就是 的矩陣形式的秩和零化度。
這個定理在抽象代數的推廣是同構定理。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.