森重文(1951年2月23日—)是日本數學家,专门是代数几何和双有理几何,因三维代数簇的分类而著名,被代数几何学家称作森重文纲领。他於1990年獲得菲尔兹奖和日本学士院奖,2004年获藤原奖。他是日本学士院院士。他在1978年於京都大学获得博士。
森重文把代数曲面分类的传统方法推广至三维代数簇。传统方法用到代数曲面的极小模型概念。他发现若作一些改变,极小模型概念也可以用到三维代数簇上,如果我们允许有一些奇点在上面。
2014年8月11日,森重文当选国际数学联盟总裁,任期自2015年1月开始。[1]
他將代數曲面(Algebraic surface)分類的經典方法推廣到代數三重(3-fold)分類。 經典方法使用代數曲面的最小模型的概念。 他發現最小模型的概念也可以應用於三重,如果我們允許它們有一些奇點的話。 將森重文的結果擴展到高於三的維度被稱為最小模型程序(Minimal model program),並且是代數幾何研究的一個活躍領域。
他當選為國際數學聯盟主席,成為首位來自東亞的主席[2]。
- 森重文『The endomorphism rings of some abelian varieties』京都大学〈博士論文(乙第3526号)〉、1978年3月23日。日本語題名『幾つかのアーベル多様体の自己準同型環』
- Mori, Shigefumi. Projective manifolds with ample tangent bundles. Annals of Mathematics. 1979, 110 (3): 593–606. JSTOR 1971241. MR 0554387.[4][5][6]
- Mori, S. and Mukai, S. (1981). “Classification of Fano 3-folds with the second B_2 ≥ 2”, Manuscripta Math., 36 (2): 147-162; Erratum, 110 (2003), 407.[5][6]
- Mori, Shigefumi (1982). “Threefolds whose canonical bundles are not numerically effective”, Annals of Mathematics 116 (1): 133-176. [4][5][6]
- Miyaoka, Y. and Mori, S. (1986). “A numerical criterion of uniruledness”, Annals of Mathematics 124 (1): 65-69. [4][5][6]
- Mori, Shigefumi (1988). “Flip theorem and the existence of minimal models for 3-folds (页面存档备份,存于互联网档案馆)”, Journal of the AMS 1 (1): 117-253.[4][5][6]
- Kollár, J., Yoichi Miyaoka, Y. and Mori, S. (1992). “Rational connectedness and boundedness of Fano manifolds”. Journal of Differential Geometory 36 (3): 765-779.[5][6]
- Kollár, J. and Mori, S. (1992). “Classification of three dimensional flips”. Journal of the AMS 5: 533-703.[4][5]
- Mori, S. and Keel, S. (1997). “Quotients by groupoids”, Annals of Mathematics 145 (1): 193-213. [4][5][6]
- Fujino, O. and Mori, S. (2000). “A canonical bundle formula”. Journal of Differential Geometory 56 (1): 167-188. MR1863025[4][5][6]
- Mori, S. and Prokhorov, Y. (2008). “On Q-conic bundles”. Publ. Res. Inst. Math. Sci. 44 (2): [5][6]
- Mori, S. and Prokhorov, Y. (2014). “Threefold Extremal Contractions of Types (IC) and (IIB)”, Proceedings of the Edinburgh Mathematical Society (Series 2) 57 (1): 231-252.[5]