在概率论中,施拉姆-勒夫纳演变(Schramm–Loewner evolution,SLE)是一个平面曲线的家族以及统计力学模型的缩放极限。
SL演变是一个勒夫纳方程,有下面的驱动函数
其中 B(t) 是D边界上的布朗运动。
若SLE描述共形场论,central charge c等于
Beffara (2008) 表明了SLE的豪斯多夫维数是min(2, 1 + κ/8)。
Lawler, Schramm & Werner (2001) 用SLE6 证明Mandelbrot (1982)的猜想:平面布朗运动边界的分形维数是4/3。
Rohde和Schramm表明了曲线的分形维数是
Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 2004, 32 (1B): 939–995. arXiv:math/0112234 . doi:10.1214/aop/1079021469.
- Beffara, Vincent, The dimension of the SLE curves, The Annals of Probability, 2008, 36 (4): 1421–1452, MR 2435854, arXiv:math/0211322 , doi:10.1214/07-AOP364
- Cardy, John, SLE for theoretical physicists, Annals of Physics, 2005, 318 (1): 81–118, Bibcode:2005AnPhy.318...81C, arXiv:cond-mat/0503313 , doi:10.1016/j.aop.2005.04.001
- Hazewinkel, Michiel (编), 施拉姆-勒夫纳演进, 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4
- Hazewinkel, Michiel (编), 施拉姆-勒夫纳演进, 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4
- Kager, Wouter; Nienhuis, Bernard, A Guide to Stochastic Loewner Evolution and its Applications, J. Stat. Phys., 2004, 115 (5/6): 1149–1229, Bibcode:2004JSP...115.1149K, arXiv:math-ph/0312056 , doi:10.1023/B:JOSS.0000028058.87266.be
- Lawler, Gregory F., An introduction to the stochastic Loewner evolution, Kaimanovich, Vadim A. (编), Random walks and geometry, Walter de Gruyter GmbH & Co. KG, Berlin: 261–293, 2004 [2020-02-11], ISBN 978-3-11-017237-9, MR 2087784, (原始内容存档于2009-09-18)
- Lawler, Gregory F., Conformally invariant processes in the plane, Mathematical Surveys and Monographs 114, Providence, R.I.: American Mathematical Society, 2005, ISBN 978-0-8218-3677-4, MR 2129588
- Lawler, Gregory F., Schramm–Loewner Evolution, 2007, arXiv:0712.3256 [math.PR]
- Lawler, Gregory F., Stochastic Loewner Evolution, [2020-02-11], (原始内容存档于2016-03-04)
- Lawler, Gregory F., Conformal invariance and 2D statistical physics, Bull. Amer. Math. Soc., 2009, 46: 35–54, doi:10.1090/S0273-0979-08-01229-9
- Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin, The dimension of the planar Brownian frontier is 4/3, Mathematical Research Letters, 2001, 8 (4): 401–411 [2020-02-11], MR 1849257, arXiv:math/0010165 , doi:10.4310/mrl.2001.v8.n4.a1, (原始内容存档于2019-09-08)
- Loewner, C., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I (PDF), Math. Ann., 1923, 89 (1–2): 103–121 [2020-02-11], JFM 49.0714.01, doi:10.1007/BF01448091, (原始内容存档 (PDF)于2019-09-26)
- Mandelbrot, Benoît, The Fractal Geometry of Nature, W. H. Freeman, 1982, ISBN 978-0-7167-1186-5
- Norris, J. R., Introduction to Schramm–Loewner evolutions (PDF), 2010 [2020-02-11], (原始内容存档 (PDF)于2019-07-14)
- Pommerenke, Christian, Univalent functions, with a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher 15, Vandenhoeck & Ruprecht, 1975 (Chapter 6 treats the classical theory of Loewner's equation)
- Schramm, Oded, Scaling limits of loop-erased random walks and uniform spanning trees, Israel Journal of Mathematics, 2000, 118: 221–288, MR 1776084, arXiv:math.PR/9904022 , doi:10.1007/BF02803524 Schramm's original paper, introducing SLE
- Schramm, Oded, Conformally invariant scaling limits: an overview and a collection of problems, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich: 513–543, 2007, ISBN 978-3-03719-022-7, MR 2334202, arXiv:math/0602151 , doi:10.4171/022-1/20
- Werner, Wendelin, Random planar curves and Schramm–Loewner evolutions, Lectures on probability theory and statistics, Lecture Notes in Math. 1840, Berlin, New York: Springer-Verlag: 107–195, 2004, ISBN 978-3-540-21316-1, MR 2079672, arXiv:math.PR/0303354 , doi:10.1007/b96719
- Werner, Wendelin, Conformal restriction and related questions, Probability Surveys, 2005, 2: 145–190, MR 2178043, doi:10.1214/154957805100000113