Remove ads

数学中,對一個给定的集合,所有由到自身的可逆映射构成的集合关于映射的合成构成一个,称为对称群,记为的任一子群称为上的置换群(英語:permutation group)。

事实速览 群论, 基本概念 ...
群论


关闭

如果是包含个元素的有限集,称其到自身的可逆映射为置换,其对称群称为阶对称群,记为的任一子群亦为置换群。[1]

置换群到被置换的元素的应用称为群作用;它在对称性和组合论以及数学的其他很多分支中有应用,也是研究晶体结构等所不可或缺的工具。


Remove ads

定義及基本性質

置換群皆為某個對稱群的子群,它的所有元素都是一集合的置換。因而它的元素所構成的集合是所對應的對稱群中關於映射的合成以及在到反元素的映射下封閉的一個子集,它亦需要包含該集合的恆等函數作為其單位元

例子

置换通常写作轮换形式,例如,在轮换指标计算中,给定集合的一个置换若为,可以写作,或者更常见的写作,因为保持不变;若对象有单个字母或数字表示,逗号也被省去,所以可以记作

Remove ads

常见的置换群

M = { 1 , 2 } {\displaystyle M=\{1,2\}}

M = { 1 , 2 , 3 } {\displaystyle M=\{1,2,3\}}

Remove ads

M = { 1 , 2 , 3 , 4 } {\displaystyle M=\{1,2,3,4\}}

Remove ads

参看

参考

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.

Remove ads