1595年12月,开普勒被介绍给了芭芭拉·穆勒(B. Müller),一个带着幼小女儿——吉玛·德威纳维尔德(Gemma van Dvijneveldt)的23岁寡妇(结过两次婚),并开始向她求爱。穆勒不但是她前两任丈夫财产的女继承人,同时也是一名成功磨坊老板的女儿。尽管开普勒有着高贵的身份,但是她父亲约布斯特(Jobst)最初也反对他们的婚姻;虽然开普勒继承了他祖父的高贵身份,但是他的贫困使他与芭芭拉不般配。开普勒完成《宇宙的神秘》之后,约布斯特动了怜悯之心,但是这个婚约差点告吹,因为开普勒外出专注于出版的各项事宜。然而,帮忙建立该婚配的教会官员强迫穆勒遵守他们的协议。1597年4月27日,芭芭拉和开普勒结婚。[18]
在《新天文学》完稿之后的几年,开普勒大部分的研究都集中在《鲁道夫星表》的编撰以及基于该星表的一整套星历(对行星和星位的具体预言,但是这两项工作在多年之后都没完成)。他还尝试(不成功)与意大利天文学家乔凡尼·安东尼奥·马吉尼(Giovanni Antonio Magini)的合作。他的其它作品涉及年代学(特别是耶稣一生中事件的日期记录)与占星学[特别是对轰动性的大灾难预言的批判,比如哈利萨耶斯·罗斯林(Helisaeus Roeslin)的预言]。[39]
开普勒在哲学和科学编史学方面的作用超出了其在天文学与自然哲学的历史发展中的作用。开普勒及其天体运动定律对早期的天文学史非常重要,比如孟都克拉(Jean-Étienne Montucla)1758年的《数学历史》以及德朗布爾(Jean-Baptiste Delambre)1821年的《现代天文学历史》。这些和其它从启蒙运动的视角编写的历史以怀疑和反对的态度看待开普勒的形而上学和宗教主张,但是到了后来的浪漫时期,自然哲学家们将这些元素视为他成功的关键。威廉姆·维赫维尔在他有着重要影响力的作品《归纳法科学的历史》(1837年)中,发现开普勒是归纳法科学天才的原型;在他的作品《哲学与归纳科学》(1840年)中,维赫维尔将开普勒称为科学方法最高级形式的体现。类似地,在凯瑟琳皇后购买了开普勒手稿之后第一个对其进行广泛研究的人——恩斯特·弗里德里希·阿贝尔特(Ernst F. Apelt)认定开普勒是“科学革命”的钥匙。阿贝尔特看过开普勒的关于数学、美感、物理学以及作为整个思想体系一部分的神学的观点,对开普勒的生活与工作首次进行了广泛的研究。[79]
对于开普勒在“科学革命”中的地位的争论也产生了一系列哲学和大众的作品。其中亚瑟·凯斯特勒所作的《梦游者》(1959)是最具影响力的作品之一。在该作品中,开普勒无疑是这场革命的英雄(不管是道德上、神学上或认知上)[82]。科学哲学家,如查尔斯·桑德斯·皮尔斯、诺伍德·拉塞尔·汉森(Norwood R. Hanson)、史蒂芬·图尔明(S. Toulmin)与卡尔·波珀都重复的求助于开普勒:不可比性实例、类比推理、证伪性与许多其它的哲学概念都在开普勒的作品中出现过。物理学家沃尔夫冈·泡利甚至使用开普勒与罗伯特·弗勒德的先后之争来探究分析心理学对科学研究的意义[83]。约翰·博纳维尔(J. Banville)所作的非常受欢迎的甚至是玄幻的历史小说《开普勒》(1981),对凯斯特勒(Koestler)的叙事性非小说与科学哲学中的许多主题进行了探究[84]。更为玄幻的是最近的一部非小说类作品——《天国的密谋》(2004),该书声称开普勒谋杀了第谷以获取他的数据[85]。开普勒获得了作为科学现代性的象征与超出时代的人物的大众形象;科普作家卡尔·萨根称他为“第一个天体物理学家与最后一个科学占星家”[86]。
在奥地利,开普勒留下的历史遗产使他成为一枚银质收藏币的图案之一:2002年9月10日的10欧元约翰内斯·开普勒银质硬币。该硬币的反面是开普勒的画像,他曾经在格拉茨及附近地区教学。开普勒私下与汉斯·乌尔里奇·艾根伯格亲王(Hans Ulrich von Eggenberg)熟识,他很可能对艾根伯格城堡的建造产生了影响(这枚硬币正面的图案)。硬币上,在他的前面镶嵌了一个《宇宙的神秘》中的球体与多面体模型。[87]
Barker, Peter; Goldstein, Bernard R. "Theological Foundations of Kepler's Astronomy", Osiris, 2nd Series, Vol. 16, Science in Theistic Contexts: Cognitive Dimensions(2001), p. 96.
Westman, Robert S. "Kepler's Early Physico-Astrological Problematic," Journal for the History of Astronomy(英语:Journal for the History of Astronomy), 32(2001): 227–36.
"Kepler's decision to base his causal explanation of planetary motion on a distance-velocity law, rather than on uniform circular motions of compounded spheres, marks a major shift from ancient to modern conceptions of science.... [Kepler] had begun with physical principles and had then derived a trajectory from it, rather than simply constructing new models. In other words, even before discovering the area law, Kepler had abandoned uniform circular motion as a physical principle." Peter Barker and Bernard R. Goldstein, "Distance and Velocity in Kepler's Astronomy", Annals of Science, 51 (1994): 59–73, at p. 60.
Caspar, Kepler, pp. 181–85. The full title is Tertius Interveniens, das ist Warnung an etliche Theologos, Medicos vnd Philosophos, sonderlich D. Philippum Feselium, dass sie bey billicher Verwerffung der Sternguckerischen Aberglauben nict das Kindt mit dem Badt aussschütten vnd hiermit jhrer Profession vnwissendt zuwider handlen, translated by C. Doris Hellman as "Tertius Interveniens, that is warning to some theologians, medics and philosophers, especially D. Philip Feselius, that they in cheap condemnation of the star-gazer's superstition do not throw out the child with the bath and hereby unknowingly act contrary to their profession."
Ferguson, Thomas S., Who solved the secretary problem ?, Statistical Science, 1989, 4 (3): 282–289 [2014-10-30], doi:10.1214/ss/1177012493, (原始内容存档于2021-04-18), When the celebrated German astronomer, Johannes Kepler (1571-1630), lost his first wife to cholera in 1611, he set about finding a new wife using the same methodical thoroughness and careful consideration of the data that he used in finding the orbit of Mars to be an ellipse... The process consumed much of his attention and energy for nearly 2 years...
By 1621 or earlier, Kepler recognized that Jupiter's moons obey his third law.
Kepler contended that rotating massive bodies communicate their rotation to their satellites, so that the satellites are swept around the central body; thus the rotation of the Sun drives the revolutions of the planets and the rotation of the Earth drives the revolution of the Moon. In Kepler's era, no one had any evidence of Jupiter's rotation. However, Kepler argued that the force by which a central body causes its satellites to revolve around it, weakens with distance; consequently, satellites that are farther from the central body revolve slower. Kepler noted that Jupiter's moons obeyed this pattern and he inferred that a similar force was responsible. He also noted that the orbital periods and semi-major axes of Jupiter's satellites were roughly related by a 3/2 power law, as are the orbits of the six (then known) planets. However, this relation was approximate: the periods of Jupiter's moons were known within a few percent of their modern values, but the moons’ semi-major axes were determined less accurately.
Kepler discussed Jupiter's moons in his Epitome Astronomiae Copernicanae [Summary of Copernican Astronomy](Linz ("Lentiis ad Danubium"),(Austria): Johann Planck, 1622), book 4, part 2, page 554 (页面存档备份,存于互联网档案馆).(For a more modern and legible edition, see: Christian Frisch, ed., Joannis Kepleri Astronomi Opera Omnia, vol. 6 (Frankfurt-am-Main, (Germany): Heyder & Zimmer, 1866), page 361 (页面存档备份,存于互联网档案馆).)
Original : 4) Confirmatur vero fides hujus rei comparatione quatuor Jovialium et Jovis cum sex planetis et Sole. Etsi enim de corpore Jovis, an et ipsum circa suum axem convertatur, non ea documenta habemus, quae nobis suppetunt in corporibus Terrae et praecipue Solis, quippe a sensu ipso: at illud sensus testatur, plane ut est cum sex planetis circa Solem, sic etiam se rem habere cum quatuor Jovialibus, ut circa corpus Jovis quilibet, quo longius ab illo potest excurrere, hoc tardius redeat, et id quidem proportione non eadem, sed majore, hoc est sescupla proportionis intervallorum cujusque a Jove: quae plane ipsissima est, qua utebantur supra sex planetae. Intervalla enim quatuor Jovialium a Jove prodit Marius in suo Mundo Joviali ista: 3, 5, 8, 13 (vel 14 Galilaeo)…Periodica vero tempora prodit idem Marius ista: dies 1. h. 18 1/2, dies 3 h. 13 1/3, dies 7 h. 3, dies 16 h. 18: ubique proportio est major quam dupla, major igitur quam intervallorum 3, 5, 8, 13 vel 14, minor tamen quam quadratorum, qui duplicant proportiones intervallorum, sc. 9, 25, 64, 169 vel 196, sicut etiam sescupla sunt majora simplis, minora vero duplis.
Translation :(4)However, the credibility of this [argument] is proved by the comparison of the four [moons] of Jupiter and Jupiter with the six planets and the Sun. Because, regarding the body of Jupiter, whether it turns around its axis, we don't have proofs for what suffices for us [regarding the rotation of ] the body of the Earth and especially of the Sun, certainly [as reason proves to us]: but reason attests that, just as it is clearly [true] among the six planets around the Sun, so also it is among the four [moons] of Jupiter, because around the body of Jupiter any [satellite] that can go farther from it orbits slower, and even that [orbit's period] is not in the same proportion, but greater [than the distance from Jupiter]; that is, 3/2(sescupla)of the proportion of each of the distances from Jupiter, which is clearly the very [proportion] as [is used for] the six planets above. In his [book] The World of Jupiter [Mundus Jovialis, 1614], [Simon] Mayr [1573-1624] presents these distances, from Jupiter, of the four [moons] of Jupiter: 3, 5, 8, 13(or 14 [according to] Galileo)… Mayr presents their time periods: 1 day 18 1/2 hours, 3 days 13 1/3 hours, 7 days 3 hours, 16 days 18 hours: for all [of these data] the proportion is greater than double, thus greater than [the proportion] of the distances 3, 5, 8, 13 or 14, although less than [the proportion] of the squares, which double the proportions of the distances, namely 9, 25, 64, 169 or 196, just as [a power of] 3/2 is also greater than 1 but less than 2.
The opening of the movie Mars et Avril(英语:Mars et Avril) by Martin Villeneuve(英语:Martin Villeneuve) is based on German astronomer Johannes Kepler’s cosmological model from the 17th century, Harmonices Mundi, in which the harmony of the universe is determined by the motion of celestial bodies. Benoît Charest(英语:Benoît Charest) also composed the score according to this theory.
Westfall, Never at Rest, pp. 143, 152, 402–03; Toulmin and Goodfield, The Fabric of the Heavens, p 248; De Gandt, 'Force and Geometry in Newton's Principia', chapter 2; Wolf, History of Science, Technology and Philosophy, p. 150; Westfall, The Construction of Modern Science, chapters 7 and 8
William Donahue, "A Novelist's Kepler," Journal for the History of Astronomy, Vol. 13 (1982), pp. 135–136; "Dancing the grave dance: Science, art and religion in John Banville's Kepler," English Studies, Vol. 86, no. 5 (October 2005), pp. 424–438
Marcelo Gleiser(英语:Marcelo Gleiser), "Kepler in the Dock", review of Gilder and Gilder's Heavenly Intrigue, Journal for the History of Astronomy, Vol. 35, pt. 4 (2004), pp. 487–489
Quote from Carl Sagan, Cosmos: A Personal Voyage(英语:Cosmos: A Personal Voyage), episode III: "The Harmony of the Worlds". Kepler was hardly the first to combine physics and astronomy; however, according to the traditional (though disputed) interpretation of the Scientific Revolution, he would be the first astrophysicist in the era of modern science.
"...in 1614, Johannes Kepler published his book "De vero anno quo aeternus dei filius humanum naturam in utero benedictae Virginis Mariae assumpsit", on the chronology related to the Star of Bethlehem.", The Star of Bethlehem, Kapteyn Astronomical Institute(英语:Kapteyn Astronomical Institute)
The most complete biography of Kepler is Max Caspar's Kepler. Though there are a number of more recent biographies, most are based on Caspar's work with minimal original research; much of the information cited from Caspar can also be found in the books by Arthur Koestler, Kitty Ferguson, and James A. Connor. Owen Gingerich's The Eye of Heaven builds on Caspar's work to place Kepler in the broader intellectual context of early-modern astronomy. Many later studies have focused on particular elements of his life and work. Kepler's mathematics, cosmological, philosophical and historical views have been extensively analyzed in books and journal articles, though his astrological work—and its relationship to his astronomy—remains understudied.
Andersen, Hanne; Peter Barker; and Xiang Chen. The Cognitive Structure of Scientific Revolutions, chapter 6: "The Copernican Revolution." New York: Cambridge University Press, 2006. ISBN 978-0-521-85575-4
Barker, Peter and Bernard R. Goldstein: "Theological Foundations of Kepler's Astronomy". Osiris, Volume 16. Science in Theistic Contexts.University of Chicago Press, 2001, pp. 88–113
Caspar, Max. Kepler; transl. and ed. by C. Doris Hellman; with a new introduction and references by Owen Gingerich; bibliographic citations by Owen Gingerich and Alain Segonds. New York: Dover, 1993. ISBN 978-0-486-67605-0
Connor, James A. Kepler's Witch: An Astronomer's Discovery of Cosmic Order Amid Religious War, Political Intrigue, and the Heresy Trial of His Mother. HarperSanFrancisco, 2004. ISBN 978-0-06-052255-1
Ferguson, Kitty. The nobleman and his housedog: Tycho Brahe and Johannes Kepler: the strange partnership that revolutionized science. London: Review, 2002. ISBN 978-0-7472-7022-5 – published in the US as: Tycho & Kepler: the unlikely partnership that forever changed our understanding of the heavens. New York: Walker, 2002. ISBN 978-0-8027-1390-2
Gilder, Joshua and Anne-Lee Gilder: Heavenly Intrigue: Johannes Kepler, Tycho Brahe, and the Murder Behind One of History's Greatest Scientific Discoveries, Doubleday(May 18, 2004). ISBN 978-0-385-50844-5 Reviews bookpage.com, crisismagazine.com
Gingerich, Owen(英语:Owen Gingerich). The Eye of Heaven: Ptolemy, Copernicus, Kepler. American Institute of Physics, 1993. ISBN 978-0-88318-863-7(Masters of modern physics; v. 7)
Gingerich, Owen: "Kepler, Johannes" in Dictionary of Scientific Biography, Volume VII. Charles Coulston Gillispie, editor. New York: Charles Scribner's Sons, 1973
Greenbaum and Boockmann: "Kepler's Astrology", Culture and Cosmos Vol. 14. Special Double Issue, 2012.
Jardine, Nick: "Koyré’s Kepler/Kepler's Koyré," History of Science, Vol. 38 (2000), pp. 363–376
Kepler, Johannes, et al. Great Books of the Western World. Volume 16: Ptolemy, Copernicus, Kepler, Chicago: Encyclopædia Britannica, Inc., 1952.(contains English translations by of Kepler's Epitome, Books IV & V and Harmonices Book 5)
Kuhn, Thomas S.The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Cambridge, MA: Harvard University Press, 1957. ISBN 978-0-674-17103-9
Lindberg, David C.: "The Genesis of Kepler's Theory of Light: Light Metaphysics from Plotinus to Kepler." Osiris, N.S. 2. University of Chicago Press, 1986, pp. 5–42.
Lear, John. Kepler's Dream. Berkeley: University of California Press, 1965
M.T.K Al-Tamimi: Great collapse Kepler's first law, Natural Science 2 (2010), ISBN 2150 – 4091
North, John. The Fontana History of Astronomy and Cosmology, Fontana Press, 1994. ISBN 978-0-00-686177-5
Pannekoek, Anton: A History of Astronomy, Dover Publications Inc 1989. ISBN 978-0-486-65994-7
Pauli, Wolfgang. Wolfgang Pauli —Writings on physics and philosophy, translated by Robert Schlapp and edited by P. Enz and Karl von Meyenn(Springer Verlag, Berlin, 1994). See section 21, The influence of archetypical ideas on the scientific theories of Kepler, concerning Johannes Kepler and Robert Fludd(英语:Robert Fludd)(1574–1637). ISBN 978-3-540-56859-9
Schneer, Cecil: "Kepler's New Year's Gift of a Snowflake." Isis(英语:Isis (journal)), Volume 51, No. 4. University of Chicago Press, 1960, pp. 531–545.
Shapin, Steven. The Scientific Revolution. Chicago: University of Chicago Press, 1996. ISBN 978-0-226-75020-0
Stephenson, Bruce. Kepler's physical astronomy. New York: Springer, 1987. ISBN 978-0-387-96541-3(Studies in the history of mathematics and physical sciences; 13); reprinted Princeton:Princeton Univ. Pr., 1994. ISBN 978-0-691-03652-6