結式是數學中一個常用的不變量。考慮域 F {\displaystyle F} 上兩個多項式 P , Q {\displaystyle P,Q} ,設其首項係數分別為 a , b {\displaystyle a,b} ,則其結式定義為 r e s ( P , Q ) := a deg Q b deg P ∏ ( x , y ) ∈ F ¯ 2 : P ( x ) = 0 , Q ( y ) = 0 ( x − y ) , {\displaystyle \mathrm {res} (P,Q):=a^{\deg Q}b^{\deg P}\prod _{(x,y)\in {\bar {F}}^{2}:\,P(x)=0,\,Q(y)=0}(x-y),\,} 其中 F ¯ {\displaystyle {\bar {F}}} 為 F {\displaystyle F} 的給定代數閉包。由此定義的結式是 F {\displaystyle F} 的元素,而与代數閉包的選取无关。 結式亦可理解為西爾維斯特矩陣的行列式。 為簡單起見,假設 P , Q {\displaystyle P,Q} 首項係數為一;若 Q {\displaystyle Q} 是可分多項式(換言之:無重根),則定義可改寫為 r e s ( P , Q ) = ∏ P ( x ) = 0 Q ( x ) {\displaystyle \mathrm {res} (P,Q)=\prod _{P(x)=0}Q(x)\,} 此式僅依賴於 Q {\displaystyle Q} 除以 P {\displaystyle P} 的餘式。 承上,可透過輾轉相除法求得結式。 r e s ( P , Q ) = ( − 1 ) deg P ⋅ deg Q ⋅ r e s ( Q , P ) {\displaystyle \mathrm {res} (P,Q)=(-1)^{\deg P\cdot \deg Q}\cdot \mathrm {res} (Q,P)} r e s ( P ⋅ R , Q ) = r e s ( P , Q ) ⋅ r e s ( R , Q ) {\displaystyle \mathrm {res} (P\cdot R,Q)=\mathrm {res} (P,Q)\cdot \mathrm {res} (R,Q)} 若 P 1 = P + R ∗ Q {\displaystyle P_{1}=P+R*Q} 且 deg P 1 = deg P {\displaystyle \deg P_{1}=\deg P} ,那么 r e s ( P , Q ) = r e s ( P 1 , Q ) {\displaystyle \mathrm {res} (P,Q)=\mathrm {res} (P_{1},Q)} 。在論及計算方式時已利用此性質。 若 X , Y , P , Q {\displaystyle X,Y,P,Q} 同次, X = a 00 ⋅ P + a 01 ⋅ Q , Y = a 10 ⋅ P + a 11 ⋅ Q {\displaystyle X=a_{00}\cdot P+a_{01}\cdot Q,Y=a_{10}\cdot P+a_{11}\cdot Q} ,則有 r e s ( X , Y ) = det ( a 00 a 01 a 10 a 11 ) deg P ⋅ r e s ( P , Q ) {\displaystyle \mathrm {res} (X,Y)=\det {\begin{pmatrix}a_{00}&a_{01}\\a_{10}&a_{11}\end{pmatrix}}^{\deg P}\cdot \mathrm {res} (P,Q)} r e s ( P − , Q ) = r e s ( Q − , P ) {\displaystyle \mathrm {res} (P_{-},Q)=\mathrm {res} (Q_{-},P)} ,其中 P − ( z ) := P ( − z ) {\displaystyle P_{-}(z):=P(-z)} 。 一多項式 P {\displaystyle P} 與其導數 P ′ {\displaystyle P'} 的結式可由判別式 D ( P ) {\displaystyle D(P)} 表示:設 P {\displaystyle P} 的首項係數為 a {\displaystyle a} ,則 D ( P ) = ( − 1 ) deg P ( deg P − 1 ) 2 a − 1 r e s ( P , P ′ ) {\displaystyle D(P)=(-1)^{\frac {\deg P(\deg P-1)}{2}}a^{-1}\mathrm {res} (P,P')} 。 在代數幾何中,可用結式計算兩條平面代數曲線之交。 在域論中,結式可用來計算範數。 Weisstein, Eric W. "Resultant." From MathWorld--A Wolfram Web Resource. (页面存档备份,存于互联网档案馆) Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.