在圖論中,邊(edges)是圖的基本單元之一,其與點共同組成了圖。一般的情況下,邊通常是連接兩個點的圖論元素,而在部分的情況下會只連接1個點(如非簡單圖)或連接3個或更多個點(如超圖),因此邊通常可以被定義為將點相連的元素,而被邊連接的點稱為端點。
分類
邊依照連接的點數量可以分為三類,其中一種稱為簡單邊,即這些邊連接2個相異的點。簡單圖的每一個邊皆為簡單邊。另一種為超邊(hyperedges),即這些邊連接3個或更多個點,通常出現於超圖中,其也可以依照其連接的邊數稱為多元邊,例如連接三個點的邊可稱為三元邊。另一類為只連接1個點的邊,或連接的兩點是相同點的邊,這種邊通常稱為自環。
在圖論中,簡單邊是指連接2個相異點的邊。簡單圖的每一個邊皆為簡單邊。更正式地,簡單邊可以定義為,有一個圖是一個二元組,其中是點集、是邊集,並且滿足,由所有無序點對構成(換句話說,邊連接了兩相異點),而這個連接了此兩個相異點的邊則稱為簡單邊。[1][2]
在圖論中,超邊又稱超連結(hyperlinks)、接口或連接(connectors)[3] 是指連接任意數量點的邊,其連接的點數量不一定為2個,可能是3個或更多。更正式地,超邊可以定義為,有一個超圖是一個二元組,其中是點集、是邊集,且邊集是的子集、是的冪集,而中的邊稱為超邊。
在不同領域中,超邊有許多不同的名稱,例如,在計算幾何學中,超邊又可以被稱為範圍(ranges)[4]、在合作博弈論中,超邊又可稱為簡單博弈(simple games)[5]。
在图论中,自环(Loop)是一条頂點与自身连接的边[6][7][8][9][10][11]。而花束圖中所有的邊皆為自环。[12]
若一個邊不具有方向性,則稱該邊為無向邊,其可以視為2個點的集合,或只有2個點的超邊。無向邊也可以在有向圖中存在,即雙向連結都存在的邊,例如有兩點A和B,若同時存在A到B的邊和B到A的邊,則這條邊在這個有向圖中可以稱為一個無向邊。
在图论中,有向邊又稱弧或箭。若一個邊具有方向性,則稱該邊為有向邊。有向邊通常會包含一個起點與終點。
有向邊也可以推廣到超圖中,其中一種對於有向超邊的定義為,有向超邊可以被定義為一個有序對(T,H),其中T代表終點集、H代表起點集,H與T是兩不相交的集合。[13]
與幾何學的關聯
在圖論中的邊與幾何學的邊不同,圖論中的邊是指連接點的抽象对象,不同於多邊形、多面體等幾何圖形的邊,幾何圖形的邊通常具有具體的線段或曲線,而圖論中的邊僅表達了哪些頂點要相連,哪些不用。[14]
參見
參考文獻
外部連結
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.