Loading AI tools
由至少十几个核糖核苷酸通过磷酸二酯键连接而成的一类生物大分子,因含核糖而得名 来自维基百科,自由的百科全书
核糖核酸(英語:ribonucleic acid,縮寫:RNA)是一類由核糖核苷酸通過3',5'-磷酸二酯鍵聚合而成的線性大分子[1]。自然界中的RNA通常是單鏈的,且RNA中最基本的四種鹼基爲腺嘌呤(A)、尿嘧啶(U)、鳥嘌呤(G)、胞嘧啶(C)[註 1],相對的,與RNA同爲核酸的DNA通常是雙鏈分子,且其含有的含氮鹼基中将RNA的尿嘧啶替换为胸腺嘧啶(T)。
RNA有着多種多樣的功能,可在遺傳編碼、轉譯、調控、基因表達等過程中發揮作用。按RNA的功能,可將RNA分爲多種類型。比如,在細胞生物中,mRNA(傳訊RNA)爲遺傳訊息的傳遞者,它能夠指導蛋白質的合成。因爲mRNA有編碼蛋白質的能力,它又被稱爲編碼RNA。而其他沒有編碼蛋白質能力的RNA則被稱爲非編碼RNA(ncRNA)。它們經由催化生化反應,或透過調控或參與基因表達過程發揮相應的生理功能。比如,tRNA(轉運RNA)在轉譯過程中起轉運RNA的作用,rRNA(核糖體RNA)於轉譯過程中起催化肽鏈形成的作用,sRNA(小RNA)起到調控基因表達的作用。此外,RNA病毒甚至以RNA作爲它們的遺傳物質。
與DNA相似,大部分有生物活性的RNA,包括mRNA、tRNA、rRNA、snRNA,以及其他一些非編碼RNA,雖然是單鏈,但含有自我互補的序列,能使得它們能進行摺疊[7],形成互補雙鏈結構(莖)。對RNA的分析表明,它們有着相對更複雜的結構。和DNA不同,RNA的二級結構並不是單純的雙螺旋,而由一系列短的二級結構構成。通過這些短的二級結構的組合,RNA甚至可以擁有與蛋白質相似的結構,並像酶那樣催化化學反應(這樣的RNA被稱爲核酶)[8]。比如,對核糖體進行分析表明,其催化成肽反應的活性位點完全由RNA構成[9]。
項目 | DNA | RNA | 解說 |
---|---|---|---|
組成主幹之糖類分子[10] | 2-去氧核糖和磷酸 | 核糖和磷酸 | |
骨架結構 | 规则的[需要較佳来源][11]:50双螺旋结构[12] | 单螺旋结构[需要較佳来源][12] 或茎环结构[13] | 即脱氧核糖核酸由两条脱氧核苷酸链构成,而核糖核酸由一条核糖核苷酸链构成。[11]:49 |
核苷酸數 | 通常上百萬 | 通常數百至數千個 | |
鹼基種類[14][12] | 腺嘌呤(A)··· 胸腺嘧啶(T) 胞嘧啶(C)··· 鳥嘌呤(G) |
腺嘌呤(A)··· 尿嘧啶(U) 胞嘧啶(C)··· 鳥嘌呤(G) |
除部分例外,DNA為胸腺嘧啶(5-甲基尿嘧啶),RNA為尿嘧啶,使RNA更易被水解。 |
五碳糖種類[12] | 脫氧核醣 | 核醣 | |
五碳糖連接組成分 | 氫原子 | 羟基 | 在五碳糖的第二個碳原子上連接的組成分不同。 |
存在于(对于真核细胞而言)[12] | 细胞核(少量存在于线粒体、叶绿体) | 细胞质 |
RNA的單體爲核糖核苷酸,其中的戊糖爲核糖,依系統命名法可將其中的碳原子從1'編號至5'。含氮鹼基與1'碳原子相連。RNA中最基本的四種鹼基分別爲A(腺嘌呤)、U(尿嘧啶)、G(鳥嘌呤)、C(胞嘧啶)。其中,腺嘌呤和鳥嘌呤爲雙環的嘌呤,尿嘧啶和胞嘧啶爲單環的嘧啶。磷酸基團與一個核糖殘基的3'碳原子相連,與下一個核糖核苷酸的5'碳原子相連。磷酸基團在生理pH下,並不都能帶上負電荷,因而RNA在生理條件下是帶電荷分子(聚陰離子)。C和G、U和A、G和U之間能夠形成氫鍵[15]。不過,鹼基之間也可能發生其他一些相互作用。比如,在一個凸出部分中,一群腺嘌呤可以互相連接[16],GNRA四環Tetraloop中有一個G-A鹼基對[15]。
核糖的2位碳上連有羥基爲RNA的一個重要結構特點。這類羥基使得RNA雙鏈的結構應與A型構象最接近[17],不過,在單鏈的某些二核苷酸環境下,也有極小的可能形成DNA最常見的B型螺旋構象[18]。A型構象使得RNA雙鏈的大溝狹窄而深,小溝淺而寬[19]。在RNA分子的構象高度可變區域(即不生成雙鏈結構的區域),2'-OH還能攻擊附近的磷酸二酯鍵,使得核糖-磷酸鏈斷裂[20]。
通過轉錄,僅僅能使RNA鏈上帶A、U、G、C四種含氮鹼基[21]不過,轉錄後修飾能夠通過多種途徑對RNA進行改造。比如,轉錄後修飾能夠將稀有鹼基假尿嘧啶(Ψ)加到RNA鏈上。假尿嘧啶與核糖之間的化學鍵是C-C鍵而不是尿嘧啶(U)的C-N鍵。胸腺嘧啶加到RNA鏈上的情形也很常見(最典型的例子是tRNA的TΨC環)[22]。另外,次黃嘌呤也是一種常見的稀有鹼基。次黃嘌呤爲腺嘌呤的脫氨產物,含有次黃嘌呤的核苷被稱爲肌苷(I)。在基因編碼的擺動假說中,肌苷有重要的作用[23]。
除以上列出的之外,經過編輯的核苷還有100多種[24]。由修飾引發的結構性變化在tRNA中最爲明顯[25],假尿嘧啶與經常在rRNA中出現2'-甲氧基核糖是最常見的修飾產物[26]。這些修飾的具體作用還沒有完全闡明。不過,值得注意的是,在rRNA中,許多的轉錄後修飾發生在高度功能化的區域,比如肽基轉移酶催化中心以及亞基結合部位,似乎說明轉錄後修飾對RNA發揮正常功能來說相當重要[27]。
具有催化功能的單鏈RNA分子,和蛋白質相類似,需要特殊的RNA三級結構。通過分子內氫鍵形成的二級結構原件構成了三級結構的框架。二級結構形成了許多可識別的「結構域」——比如莖環結構、膨大結構(bulges)、內環結構[28]。因爲RNA分子帶電荷,不少二級結構和三級結構需要Mg2+等金屬離子來進行穩定[29]。
自然界中的RNA均是由D-核糖核苷酸聚合而成的D-RNA。使用L-核糖核苷酸則可合成L-RNA。L-RNA對RNA酶的耐受力要強得多[30]。
RNA的合成一般由RNA聚合酶催化。RNA聚合酶以DNA爲模板,通過轉錄合成RNA。轉錄起始於RNA聚合酶與啓動子的結合(啓動子一般位於基因的上游)。因爲RNA聚合酶自帶解旋酶活性,僅依靠RNA聚合酶即可實現DNA雙鏈的解開。轉錄過程中,RNA聚合酶以3'端至5'端的方向讀取DNA模板鏈,並以5'端到3'端的方向合成與之反向平行互補的RNA鏈。轉錄的終止由終止子介導。原核生物的終止子有兩類:簡單終止子與ρ因子依賴性終止子。簡單終止子僅靠RNA形成二級結構即可終止轉錄,而後者在ρ因子的作用下才可以使轉錄終止。真核生物的轉錄終止則與轉錄後修飾密切相關[2]:323[31][32]:531-535。
在真核生物中,RNA的初始轉錄物通常會經過轉錄後修飾。比如,真核生物的mRNA大都會被加上Poly(A)尾(多腺嘌呤尾巴)以及5'端帽,mRNA前體中含有的內含子序列也會被剪接體切除[32]:580-581。
一些RNA是由RNA複製酶(RNA依賴性RNA聚合酶)以RNA爲模板催化合成的。比方說,RNA病毒通過RNA複製酶複製其遺傳物質[33]。另外,RNA複製酶亦參與了眾多生物體的RNA干涉過程[34]。
在细胞中,根據結構功能的不同,RNA主要分三類,即tRNA、rRNA,以及mRNA。mRNA是依據DNA序列轉錄而成的蛋白質合成模板;tRNA是mRNA上遺傳密碼的識別者和氨基酸的轉運者;rRNA是組成核糖体的部分,而核糖體是蛋白質合成的機械。
細胞中還有許多種類和功能不一的小型RNA,像是組成剪接體(spliceosome)的snRNA,負責rRNA成型的snoRNA,以及參與RNAi作用的miRNA與siRNA等,可調節基因表現。而其他如I、II型内含子、RNase P、HDV、核糖體RNA等等都有催化生化反應過程的活性,即具有酶的活性,這類RNA被稱為核酶。
許多種類的RNA,能夠透過與mRNA或DNA上的基因片段,部分互補的方式,來調降基因表現。例如在真核Heidi nt),能引發RNA干擾。miRNA與酵素複合體,會切碎mRNA,阻止該mRNA被轉譯,或加速其降解。[35][36]
雖然小干擾RNA(siRNA; 20-25 nt)的產生,通常是由分解病毒RNA得到,然而也存在內源性的siRNA。[37][38]而siRNA引發RNA干擾的機制類似miRNA,有些miRNA和siRNA,能造成其目標基因被甲基化,從而促進或抑制該基因的轉錄。.[39][40][41]此外,在動物生殖細胞內,所活躍的Piwi-interacting RNA(piRNA; 29-30 nt),被認為能預防轉座子,並在配子的發生上,扮演重要角色。[42][43]
許多的原核生物,具有CRISPR RNAs,其作用機制類似於真核生物的RNA干擾。[44]其中反義RNA(Antisense RNAs)是最常見的,大多數能調降基因表現,但也有少部分會活化轉錄進行。[45]反義RNA的作用機制之一,是藉由與mRNA互補配對,來形成雙股RNA,而被酵素降解。[46]此外,在真核細胞內,也許多能調控基因的非編碼RNA,[47]一個常見的例子是Xist,它會附在雌性哺乳動物的其中一個X染色體上,造成其去活化。[48]
一段mRNA自身可能帶有調控元件,例如riboswitches,在其五端非轉譯區(5' untranslated region)或三端非轉譯區(3' untranslated region),包含有順式作用元件(cis-regulatory elements)能夠調控該mRNA的活性。[49]此外,非編碼區上也有可能帶有,能調控其它基因的調控元件。[50]
許多的RNA會幫助修飾其它RNA。如前信使RNA(pre-mRNA)中的內含子,會被含有許多核小RNA(snRNA)的剪接體剪接。[6]或者RNA本身能作為核酶,剪接自己的內含子。[51]
RNA上的核苷酸也可能被修飾,變成非A、U、G、C的核苷酸。在真核細胞中,RNA上核苷酸的修飾,通常是由在細胞核與卡哈爾體中發現的,小核仁RNA(snoRNA; 60-300 nt)所主導。[52]snoRNA會連結酵素,並以鹼基對的方式,引導它們去接上RNA,之後酵素便開始RNA核苷酸的修飾。鹼基修飾廣泛發生於rRNA與tRNA中,然而snRNA與mRNA也有可能是鹼基修飾的目標。[53][54]此外,RNA也可能被甲基化。[55][56]
如同DNA,RNA也可以攜帶遺傳信息。RNA病毒的基因組由RNA組成,可以轉譯出多種蛋白質,其中一些負責基因組的複製,而其它的則作為保護構造,在病毒離開宿主細胞後,保護基因組。類病毒是另一種類型的病原體,但它們僅由RNA組成,且該RNA並不會轉譯出任何蛋白質,並利用宿主的聚合酶來複製。[57]
反轉錄病毒藉由將RNA反轉錄成為DNA,DNA副本再轉錄為RNA的方式,來複製他們的基因組。反轉錄轉座子也利用此方法,來複製DNA與RNA,以完成轉座。[58]此外,真核細胞內的端粒酶,也包含一個作為模板的RNA,利用它來延長染色體端粒。[59]
雙鏈RNA(dsRNA)是指具有兩個互補鏈的RNA,與細胞中的DNA結構相似,它也是某些病毒(雙鏈RNA病毒)的遺傳物質。雙鏈RNA如病毒RNA或小干擾RNA(siRNA),可以觸發真核生物的RNA干擾,以及脊椎動物的干擾素反應。[60][61][62][63]
一般的双链RNA是一条RNA折叠互補的。
與RNA相關的研究,造就了許多生物學的發現,以及諾貝爾獎。而核酸於1868年由弗雷德里希·米歇爾發現,當時他將該物質稱作「核素」,因為它是在細胞核中被找到的。[64]但不久後,科學家也在沒有細胞核的原核生物中,也發現了核酸。此外,早在1939年就有人懷疑,RNA在蛋白質合成中所扮演的角色。[65]塞韋羅·奧喬亞與阿瑟·科恩伯格,因為在實驗室內發現了,能夠合成RNA的酵素,而獲得1959年的諾貝爾生理學或醫學獎[66]然而,之後的研究顯示,由他們所發現的酵素多核苷酸磷酸化酶,是負責RNA降解,而非RNA合成。
羅伯特·威廉·霍利於1965年,發現酵母菌裡大小為77個核苷酸的tRNA序列,[67] 並於1968年與哈爾·葛賓·科拉納以及馬歇爾·沃倫·尼倫伯格共同獲得了諾貝爾生理或醫學獎。在1967年,卡爾·烏斯推測RNA可能具有催化能力,並提出建議指出,最早的生命形式(自我複製的分子)可能依賴於RNA,來攜帶遺傳信息和催化生化反應,即RNA世界學說。[68][69]
反轉錄病毒及反轉錄酶,於1970年代早期被發現的,使人們了解到RNA能被反轉錄為DNA(與中心法則的一般情況,DNA轉錄為RNA相反)。 這項發現,使戴維·巴爾的摩、羅納托·杜爾貝科與霍華德·馬丁·特明,共同獲得了1975年的諾貝爾生理學或醫學獎。此外在1976年,瓦爾特·菲爾斯以及他的團隊,首度確定了RNA病毒完整基因組的鹼基序列(噬菌體MS2)。[70]
在1997年,菲利普·夏普與理察·羅伯茨,因為發現哺乳類動物病毒及細胞基因中,具有內含子且會發生RNA剪接,而獲得1993年的諾貝爾生理學或醫學獎。具有催化功能的RNA(核酶)在1980年代早期被發現,而使得托馬斯·切赫與西德尼·奧爾特曼,獲得1989年的諾貝爾化學獎。而1990年所發現在碧冬茄屬上,導入基因會靜默植物體自身相似的基因的現象,現今被認為是RNA干擾的結果。[71][72]
且大約在同時,大小約22個核苷酸的RNA(現在被稱為微RNA),被發現在線蟲的發育上,扮演重要角色。[73]而於RNA干擾的研究,讓安德魯·法厄與克雷格·梅洛,獲得了2006年的諾貝爾生理學或醫學獎;而同年的諾貝爾化學獎,由羅傑·科恩伯格獲得,得獎原因也與RNA相關(在RNA轉錄上的研究)。此外調控RNA的發現,促使了RNA藥物的開發,如利用小干擾RNA來靜默目標基因。[74]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.