柯西-施瓦茨不等式(英語:Cauchy–Schwarz inequality),又稱施瓦茨不等式或柯西-布尼亞科夫斯基-施瓦茨不等式或柯西不等式,在多個数学领域中均有應用的不等式;例如線性代數的矢量,數學分析的無窮級數和乘積的積分,和概率論的方差和協方差。它被认为是最重要的数学不等式之一。它有一些推广,如赫尔德不等式。 不等式以奧古斯丁·路易·柯西(Augustin Louis Cauchy),赫爾曼·阿曼杜斯·施瓦茨(Hermann Amandus Schwarz),和維克托·雅科夫列維奇·布尼亞科夫斯基(英语:Viktor_Bunyakovsky)(Виктор Яковлевич Буняковский)命名。 V {\displaystyle V} 是個複内积空间,則對所有的 v , w ∈ V {\displaystyle v,\,w\in V} 有: (a) ‖ v ‖ ‖ w ‖ ≥ | ⟨ v , w ⟩ | {\displaystyle \|v\|\|w\|\geq |\langle v,\,w\rangle |} (b) ‖ v ‖ ‖ w ‖ = | ⟨ v , w ⟩ | {\displaystyle \|v\|\|w\|=|\langle v,\,w\rangle |} ⇔ {\displaystyle \Leftrightarrow } 存在 λ ∈ C {\displaystyle \lambda \in \mathbb {C} } 使 v = λ ⋅ w {\displaystyle v=\lambda \cdot w} 證明請見内积空间#范数。 Rn-n维欧几里得空间 對歐幾里得空間Rn,有 ( ∑ i = 1 n x i y i ) 2 ≤ ( ∑ i = 1 n x i 2 ) ( ∑ i = 1 n y i 2 ) {\displaystyle \left(\sum _{i=1}^{n}x_{i}y_{i}\right)^{2}\leq \left(\sum _{i=1}^{n}x_{i}^{2}\right)\left(\sum _{i=1}^{n}y_{i}^{2}\right)} 。 等式成立時: x 1 y 1 = x 2 y 2 = ⋯ = x n y n . {\displaystyle {\frac {x_{1}}{y_{1}}}={\frac {x_{2}}{y_{2}}}=\cdots ={\frac {x_{n}}{y_{n}}}.} 也可以表示成 ( x 1 2 + x 2 2 + ⋯ + x n 2 ) ( y 1 2 + y 2 2 + ⋯ + y n 2 ) ≥ ( x 1 y 1 + x 2 y 2 + ⋯ + x n y n ) 2 {\displaystyle (x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2})(y_{1}^{2}+y_{2}^{2}+\cdots +y_{n}^{2})\geq (x_{1}y_{1}+x_{2}y_{2}+\cdots +x_{n}y_{n})^{2}} 證明則須考慮一個關於 t {\displaystyle t} 的一個一元二次方程式 ( x 1 t + y 1 ) 2 + ⋯ + ( x n t + y n ) 2 = 0 {\displaystyle (x_{1}t+y_{1})^{2}+\cdots +(x_{n}t+y_{n})^{2}=0} 很明顯的,此方程式無實數解或有重根,故其判別式 D ≤ 0 {\displaystyle D\leq 0} 注意到 ( x 1 t + y 1 ) 2 + ⋯ + ( x n t + y n ) 2 ≥ 0 {\displaystyle (x_{1}t+y_{1})^{2}+\cdots +(x_{n}t+y_{n})^{2}\geq 0} ⇒ ( x 1 2 + x 2 2 + ⋯ + x n 2 ) t 2 + 2 ( x 1 y 1 + x 2 y 2 + ⋯ + x n y n ) t + ( y 1 2 + y 2 2 + ⋯ + y n 2 ) ≥ 0 {\displaystyle (x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2})t^{2}+2(x_{1}y_{1}+x_{2}y_{2}+\cdots +x_{n}y_{n})t+(y_{1}^{2}+y_{2}^{2}+\cdots +y_{n}^{2})\geq 0} 則 D = 4 ( x 1 y 1 + x 2 y 2 + ⋯ + x n y n ) 2 − 4 ( x 1 2 + x 2 2 + ⋯ + x n 2 ) ( y 1 2 + y 2 2 + ⋯ + y n 2 ) ≤ 0 {\displaystyle D=4(x_{1}y_{1}+x_{2}y_{2}+\cdots +x_{n}y_{n})^{2}-4(x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2})(y_{1}^{2}+y_{2}^{2}+\cdots +y_{n}^{2})\leq 0} 即 ( x 1 2 + x 2 2 + ⋯ + x n 2 ) ( y 1 2 + y 2 2 + ⋯ + y n 2 ) ≥ ( x 1 y 1 + x 2 y 2 + ⋯ + x n y n ) 2 {\displaystyle (x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2})(y_{1}^{2}+y_{2}^{2}+\cdots +y_{n}^{2})\geq (x_{1}y_{1}+x_{2}y_{2}+\cdots +x_{n}y_{n})^{2}} ( x 1 t + y 1 ) 2 + ⋯ + ( x n t + y n ) 2 = 0 {\displaystyle (x_{1}t+y_{1})^{2}+\cdots +(x_{n}t+y_{n})^{2}=0} ( x 1 2 + x 2 2 + ⋯ + x n 2 ) ( y 1 2 + y 2 2 + ⋯ + y n 2 ) ≥ ( x 1 y 1 + x 2 y 2 + ⋯ + x n y n ) 2 {\displaystyle (x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2})(y_{1}^{2}+y_{2}^{2}+\cdots +y_{n}^{2})\geq (x_{1}y_{1}+x_{2}y_{2}+\cdots +x_{n}y_{n})^{2}} 而等號成立於判別式 D = 0 {\displaystyle D=0} 時 也就是此時方程式有重根,故 x 1 y 1 = x 2 y 2 = ⋯ = x n y n . {\displaystyle {\frac {x_{1}}{y_{1}}}={\frac {x_{2}}{y_{2}}}=\cdots ={\frac {x_{n}}{y_{n}}}.} 對平方可積的複值函數,有 | ∫ f ( x ) g ( x ) d x | 2 ≤ ∫ | f ( x ) | 2 d x ⋅ ∫ | g ( x ) | 2 d x {\displaystyle \left|\int f(x)g(x)\,dx\right|^{2}\leq \int \left|f(x)\right|^{2}\,dx\cdot \int \left|g(x)\right|^{2}\,dx} 。 這兩例可更一般化為赫爾德不等式。 在3維空間,有一個較強結果值得注意:原不等式可以增強至拉格朗日恒等式 ⟨ x , x ⟩ ⋅ ⟨ y , y ⟩ = | ⟨ x , y ⟩ | 2 + | x × y | 2 {\displaystyle \langle x,x\rangle \cdot \langle y,y\rangle =|\langle x,y\rangle |^{2}+|x\times y|^{2}} 。 这是 ( ∑ i = 1 n x i y i ) 2 = ( ∑ i = 1 n x i 2 ) ( ∑ i = 1 n y i 2 ) − ( ∑ 1 ≤ i < j ≤ n ( x i y j − x j y i ) 2 ) {\displaystyle \left(\sum _{i=1}^{n}x_{i}y_{i}\right)^{2}=\left(\sum _{i=1}^{n}x_{i}^{2}\right)\left(\sum _{i=1}^{n}y_{i}^{2}\right)-\left(\sum _{1\leq i<j\leq n}(x_{i}y_{j}-x_{j}y_{i})^{2}\right)} 在n=3 时的特殊情况。 L2 对于平方可积复值函数的内积空间,有如下不等式: | ∫ R n f ( x ) g ( x ) ¯ d x | 2 ≤ ∫ R n | f ( x ) | 2 d x ∫ R n | g ( x ) | 2 d x . {\displaystyle \left|\int _{\mathbb {R} ^{n}}f(x){\overline {g(x)}}\,dx\right|^{2}\leq \int _{\mathbb {R} ^{n}}|f(x)|^{2}\,dx\int _{\mathbb {R} ^{n}}|g(x)|^{2}\,dx.} 赫尔德不等式是该式的推广。 设 x , y {\displaystyle x,y} 为列向量,则 | x ∗ y | 2 ≤ x ∗ x ⋅ y ∗ y {\displaystyle |x^{*}y|^{2}\leq x^{*}x\cdot y^{*}y} [a] x = 0 {\displaystyle x=0} 時不等式成立,设 x {\displaystyle x} 非零, z = y − y ∗ x ‖ x ‖ 2 x {\displaystyle z=y-{\cfrac {y^{*}x}{\|x\|^{2}}}x} ,则 x ∗ z = 0 {\displaystyle x^{*}z=0} 0 ≤ ‖ z ‖ 2 = z ∗ y = ‖ y ‖ 2 − x ∗ y ‖ x ‖ 2 x ∗ y = ‖ y ‖ 2 − | x ∗ y | 2 ‖ x ‖ 2 {\displaystyle 0\leq \|z\|^{2}=z^{*}y=\|y\|^{2}-{\cfrac {x^{*}y}{\|x\|^{2}}}x^{*}y=\|y\|^{2}-{\cfrac {|x^{*}y|^{2}}{\|x\|^{2}}}} | x ∗ y | 2 ≤ ‖ x ‖ 2 ‖ y ‖ 2 {\displaystyle |x^{*}y|^{2}\leq \|x\|^{2}\|y\|^{2}} 等号成立 ⇔ z = 0 ⇔ y {\displaystyle \Leftrightarrow z=0\Leftrightarrow y} 与 x {\displaystyle x} 线性相关 设 A {\displaystyle A} 为 n × n {\displaystyle n\times n} Hermite阵,且 A ≥ 0 {\displaystyle A\geq 0} ,则 | x ∗ A y | 2 ≤ x ∗ A x ⋅ y ∗ A y {\displaystyle |x^{*}Ay|^{2}\leq x^{*}Ax\cdot y^{*}Ay} 存在 A 1 / 2 {\displaystyle A^{1/2}} ,设 u = A 1 / 2 x , v = A 1 / 2 y {\displaystyle u=A^{1/2}x,v=A^{1/2}y} | u ∗ v | 2 ≤ u ∗ u ⋅ v ∗ v {\displaystyle |u^{*}v|^{2}\leq u^{*}u\cdot v^{*}v} | x ∗ A 1 / 2 A 1 / 2 y | 2 ≤ x ∗ A 1 / 2 A 1 / 2 x ⋅ y ∗ A 1 / 2 A 1 / 2 y {\displaystyle |x^{*}A^{1/2}A^{1/2}y|^{2}\leq x^{*}A^{1/2}A^{1/2}x\cdot y^{*}A^{1/2}A^{1/2}y} | x ∗ A y | 2 ≤ x ∗ A x ⋅ y ∗ A y {\displaystyle |x^{*}Ay|^{2}\leq x^{*}Ax\cdot y^{*}Ay} 等号成立 ⇔ y {\displaystyle \Leftrightarrow y} 与 x {\displaystyle x} 线性相关 设 A {\displaystyle A} 为 n × n {\displaystyle n\times n} Hermite阵,且 A > 0 {\displaystyle A>0} ,则 | x ∗ y | 2 ≤ x ∗ A x ⋅ y ∗ A − 1 y {\displaystyle |x^{*}y|^{2}\leq x^{*}Ax\cdot y^{*}A^{-1}y} 存在 A 1 / 2 , A − 1 / 2 {\displaystyle A^{1/2},A^{-1/2}} ,设 u = A 1 / 2 x , v = A − 1 / 2 y {\displaystyle u=A^{1/2}x,v=A^{-1/2}y} | u ∗ v | 2 ≤ u ∗ u ⋅ v ∗ v {\displaystyle |u^{*}v|^{2}\leq u^{*}u\cdot v^{*}v} | x ∗ A 1 / 2 A − 1 / 2 y | 2 ≤ x ∗ A 1 / 2 A 1 / 2 x ⋅ y ∗ A − 1 / 2 A − 1 / 2 y {\displaystyle |x^{*}A^{1/2}A^{-1/2}y|^{2}\leq x^{*}A^{1/2}A^{1/2}x\cdot y^{*}A^{-1/2}A^{-1/2}y} | x ∗ y | 2 ≤ x ∗ A x ⋅ y ∗ A − 1 y {\displaystyle |x^{*}y|^{2}\leq x^{*}Ax\cdot y^{*}A^{-1}y} 等号成立 ⇔ x {\displaystyle \Leftrightarrow x} 与 A − 1 y {\displaystyle A^{-1}y} 线性相关[1] 若 q i ≥ 0 , ∑ i q i = 1 {\displaystyle \displaystyle q_{i}\geq 0,\sum _{i}q_{i}=1} ,则 ( x ∗ A ∑ i a i q i x ) ≤ ∏ i ( x ∗ A a i x ) q i {\displaystyle \displaystyle (x^{*}A^{\sum _{i}a_{i}q_{i}}x)\leq \prod _{i}(x^{*}A^{a_{i}}x)^{q_{i}}} [2] 设 f ( z ) {\displaystyle f(z)} 在区域 D {\displaystyle D} 及其边界上解析, a {\displaystyle a} 为 D {\displaystyle D} 内一点,以 a {\displaystyle a} 为圆心做圆周 C R : | z − a | = R {\displaystyle C_{R}:|z-a|=R} ,只要 C R {\displaystyle C_{R}} 及其内部 G {\displaystyle G} 均被 D {\displaystyle D} 包含,则有: | f ( n ) ( z 0 ) | ≤ n ! M R n ( n = 1 , 2 , 3 , . . . ) {\displaystyle \left|f^{(n)}(z_{0})\right|\leq {\frac {n!M}{R^{n}}}\qquad (n=1,2,3,...)} 其中,M是 | f ( z ) | {\displaystyle |f(z)|} 的最大值, M = max | x − a | ∈ R | f ( x ) | {\displaystyle M=\max \limits _{|x-a|\in R}|f(x)|} 。 ∑ i = 1 n ( ∑ j = 1 m a i j ) 2 ≤ ∑ j = 1 m ∑ i = 1 n a i j 2 {\displaystyle {\sqrt {\sum _{i=1}^{n}(\sum _{j=1}^{m}a_{ij})^{2}}}\leq \sum _{j=1}^{m}{\sqrt {\sum _{i=1}^{n}a_{ij}^{2}}}} [3] m ≥ α > 0 , ( ∑ i = 1 n ∏ j = 1 m a i j ) α ≤ ∏ j = 1 m ∑ i = 1 n a i j α {\displaystyle m\geq \alpha >0,(\sum _{i=1}^{n}\prod _{j=1}^{m}a_{ij})^{\alpha }\leq \prod _{j=1}^{m}\sum _{i=1}^{n}a_{ij}^{\alpha }} [4] 三角不等式 內積空間 [a] x ∗ {\displaystyle x^{*}} 表示x的共轭转置。 [1]王松桂. 矩阵不等式-(第二版). [2]程伟丽 齐静. Cauchy不等式矩阵形式的推广. 郑州轻工业学院学报(自然科学版). 2008, (4) [2015-03-24]. (原始内容存档于2019-06-08). [3]赵明方. Cauchy不等式的推广. 四川师范大学学报(自然科学版). 1981, (2) [2015-03-24]. (原始内容存档于2019-06-03). [4]洪勇. 推广的Cauchy不等式的再推广. 曲靖师范学院学报. 1993, (S1) [2015-03-24]. (原始内容存档于2019-06-03). Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.