古巴比伦留下的陶片显示,在大约公元前2000年(2000 BC)古巴比伦的数学家就能解一元二次方程了。在大約公元前480年,中國人已经使用配方法求得了二次方程的正根。公元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。
7世紀印度的婆羅摩笈多(Brahmagupta)是第一位懂得用使用代數方程式且容許同時有正負根的數學家。
11世紀阿拉伯的花拉子密独立地发展了一套公式以求方程的正数解。亚伯拉罕·巴希亚(亦以拉丁文名字萨瓦索达著称)在他的著作Liber embadorum中,首次将完整的一元二次方程解法传入欧洲。
据说施里德哈勒是最早给出二次方程的普适解法的数学家之一。但这一点在他的时代存在着争议。这个求解规则是(引自婆什迦罗第二):
- 在方程的两边同时乘以二次项未知数的系数的四倍;在方程的两边同时加上一次项未知数的系数的平方;然后在方程的两边同时开二次方根。
将其转化为数学语言:解关于的方程
在方程的两边同时乘以二次项未知数的系数的四倍,即[1],得
在方程的两边同时加上一次项未知数的系数的平方,即,得
然后在方程的两边同时开二次方根,得
阿贝尔指出,任意一元二次方程都可以根据、、三个系数,通过初等代数运算来求解。求得的解也被称为方程的根。
一般来说,一元二次方程有两个根。
对于,若,则它的两个不等实数根可以表示为
;
若,则它的两个相等实数根可以表示为
;
若,则它的两个共轭复数根可以表示为
。
公式解可以由配方法得出。
已知关于 的一元二次方程
①移项,得:
;
②二次项系数化为 ,得:
;
③配方,得:
,
;
因为 ,所以
若,则它的两个不等实数根可以表示为
;
若,则它的两个相等实数根可以表示为
;
若,则它的两个共轭复数根可以表示为
。
一元二次方程的求根公式在方程的係數为有理数、实数、复数或是任意数域中适用。
公式中的根式
應該理解為「如果存在的話,兩個自乘後為的數當中任何一個」。在某些数域中,有些数值没有平方根。
即系数为非实数时的一元二次方程,将系数扩展到复数域内,此时要注意根的判别式不适用于非实系数一元二次方程。
根据韦达定理可以找出一元二次方程的根与系数的关系。
在使用计算机解一元二次方程时,跟人手工计算相似,大部分情况下也是根据以下公式去解可以进行符号运算的程序,比如Mathematica,可以给出准确的解析表达式。而大部分程序则只会给出数值解。(但亦有部分显示平方根及虚数)
Sridhara. www-gap.dcs.st-and.ac.uk. 2006-02-08 [2024-07-02]. (原始内容存档于2006-02-08) (英语).