余弦(cosine)是三角函数的一种。它的定义域是整个实数集,值域是 [ − 1 , 1 ] {\displaystyle [-1,1]} 。它是周期函数,其最小正周期为 2 π {\displaystyle 2\pi } (360°)。在自变量为 2 n π {\displaystyle 2n\pi } (或 360 ∘ n {\displaystyle 360^{\circ }n} ,其中 n {\displaystyle n} 为整数)时,该函数有极大值1;在自变量为 ( 2 n + 1 ) π {\displaystyle (2n+1)\pi } ( 360 ∘ n + 180 ∘ {\displaystyle 360^{\circ }n+180^{\circ }} )时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。 余弦 性質 奇偶性 偶 定義域 (-∞,∞) 到達域 [-1,1] 周期 2 π {\displaystyle 2\pi } (360°) 特定值 當x=0 1 當x=+∞ N/A 當x=-∞ N/A 最大值 (2 k π {\displaystyle k\pi } , 1)(360°k, 1) 最小值 ( ( 2 k + 1 ) π {\displaystyle \left(2k+1\right)\pi } , -1)(360°k+180°, -1) 其他性質 渐近线 N/A 根 k π − π 2 {\displaystyle k\pi -{\tfrac {\pi }{2}}} ( 180 ∘ k − 90 ∘ {\displaystyle 180^{\circ }k-90^{\circ }} ) 臨界點 k π {\displaystyle k\pi } ( 180 ∘ k {\displaystyle 180^{\circ }k} ) 拐點 k π − π 2 {\displaystyle k\pi -{\tfrac {\pi }{2}}} ( 180 ∘ k − 90 ∘ {\displaystyle 180^{\circ }k-90^{\circ }} ) 不動點 x軸為弧度時: 0.7390851332152...(42.3464588340929...°) x軸為角度時:0.999847741531088...°(0.0174506351083467...) k是一個整數。 符号说明 余弦的符号为 cos {\displaystyle \cos } ,取自拉丁文cosinus。该符号最早由瑞士数学家莱昂哈德·欧拉所采用。 定义 直角三角形中 直角三角形,∠C為直角,∠A 的角度為 θ {\displaystyle \theta } , 對於 ∠A 而言,a為對邊、b為鄰邊、c為斜邊 在直角三角形中,一个锐角 ∠ A {\displaystyle \angle A} 的余弦定义为它的邻边与斜边的比值,也就是: cos θ = b c {\displaystyle \cos \theta ={\frac {\mathrm {b} }{\mathrm {c} }}\,\!} 可以發現其定義和正割函數互為倒數。 直角坐标系中 设 α {\displaystyle \alpha } 是平面直角坐标系xOy中的一个象限角, P ( x , y ) {\displaystyle P\left({x,y}\right)} 是角的终边上一点, r = x 2 + y 2 > 0 {\displaystyle r={\sqrt {x^{2}+y^{2}}}>0} 是P到原点O的距离,则 α {\displaystyle \alpha } 的余弦定义为: cos α = x r {\displaystyle \cos \alpha ={\frac {x}{r}}\,\!} 单位圆定义 单位圆 图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角 θ {\displaystyle \theta } ,并与单位圆相交。这个交点的y坐标等于 sin θ {\displaystyle \sin \theta } 。 在这个图形中的三角形确保了这个公式;半径等于斜边并有长度1,所以有了 cos θ = x 1 {\displaystyle \cos \theta ={\frac {x}{1}}} 。单位圆可以被认为是通过改变邻边和对边的长度并保持斜边等于1查看无限数目的三角形的一种方式。 对于大于 2 π {\displaystyle 2\pi } (360°)或小于 − 2 π {\displaystyle -2\pi } (-360°)的角度,简单的继续绕单位圆旋转。在这种方式下,余弦变成了周期为 2 π {\displaystyle 2\pi } (360°)的周期函数: cos θ = cos ( θ + 2 π k ) = cos ( θ + 360 ∘ k ) {\displaystyle \cos \theta =\cos \left(\theta +2\pi k\right)=\cos \left(\theta +360^{\circ }k\right)} 对于任何角度 θ {\displaystyle \theta } 和任何整数 k {\displaystyle k} 。 级数定义 cos x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯ = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! {\displaystyle \cos x=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-{\frac {x^{6}}{6!}}+\cdots =\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n}}{(2n)!}}\,\!} 微分方程定义 由于余弦的导数是负的正弦,正弦的导数是余弦,因此余弦函数满足初值問題 y ″ = − y , y ( 0 ) = 1 , y ′ ( 0 ) = 0 {\displaystyle y''=-y,\,y(0)=1,\,y'(0)=0} 这就是余弦的微分方程定义。 指数定义 cos θ = e i θ + e − i θ 2 {\displaystyle \cos \theta ={\frac {e^{i\theta }+e^{-i\theta }}{2}}\,\!} 恒等式 用其它三角函数来表示余弦 更多信息 , ... 函数 sin cos tan csc sec cot cos θ = {\displaystyle \cos \theta =} 1 − sin 2 θ {\displaystyle {\sqrt {1-\sin ^{2}\theta }}} cos θ {\displaystyle \cos \theta \ } 1 1 + tan 2 θ {\displaystyle {\frac {1}{\sqrt {1+\tan ^{2}\theta }}}} csc 2 θ − 1 csc θ {\displaystyle {\frac {\sqrt {\csc ^{2}\theta -1}}{\csc \theta }}} 1 sec θ {\displaystyle {\frac {1}{\sec \theta }}} cot θ 1 + cot 2 θ {\displaystyle {\frac {\cot \theta }{\sqrt {1+\cot ^{2}\theta }}}} 关闭 两角和差公式 cos ( x + y ) = cos x cos y − sin x sin y {\displaystyle \cos \left(x+y\right)=\cos x\cos y-\sin x\sin y} cos ( x − y ) = cos x cos y + sin x sin y {\displaystyle \cos \left(x-y\right)=\cos x\cos y+\sin x\sin y} 二倍角公式 cos ( 2 θ ) = cos 2 θ − sin 2 θ = 2 cos 2 θ − 1 = 1 − 2 sin 2 θ {\displaystyle \cos(2\theta )=\cos ^{2}\theta -\sin ^{2}\theta =2\cos ^{2}\theta -1=1-2\sin ^{2}\theta } 三倍角公式 cos 3 θ = 4 cos 3 θ − 3 cos θ {\displaystyle \cos 3\theta =4\cos ^{3}\theta -3\cos \theta \,} 半角公式 cos θ 2 = ± 1 + cos θ 2 . {\displaystyle \cos {\frac {\theta }{2}}=\pm \,{\sqrt {\frac {1+\cos \theta }{2}}}.\,} 幂简约公式 cos 2 θ = 1 + cos 2 θ 2 {\displaystyle \cos ^{2}\theta ={\frac {1+\cos 2\theta }{2}}\,\!} cos 3 θ = 3 cos θ + cos 3 θ 4 {\displaystyle \cos ^{3}\theta ={\frac {3\cos \theta +\cos 3\theta }{4}}\,\!} 和差化积公式 cos θ + cos ϕ = 2 cos ( θ + ϕ 2 ) cos ( θ − ϕ 2 ) {\displaystyle \cos \theta +\cos \phi =2\cos \left({\frac {\theta +\phi }{2}}\right)\cos \left({\frac {\theta -\phi }{2}}\right)} cos θ − cos ϕ = − 2 sin ( θ + ϕ 2 ) sin ( θ − ϕ 2 ) {\displaystyle \cos \theta -\cos \phi =-2\sin \left({\theta +\phi \over 2}\right)\sin \left({\theta -\phi \over 2}\right)} 万能公式 cos α = 1 − tan 2 α 2 1 + tan 2 α 2 {\displaystyle \cos \alpha ={\frac {1-\tan ^{2}{\frac {\alpha }{2}}}{1+\tan ^{2}{\frac {\alpha }{2}}}}\,\!} 含有余弦的积分 ∫ cos c x d x = 1 c sin c x {\displaystyle \int \cos cx\;dx={\frac {1}{c}}\sin cx\,\!} ∫ cos n c x d x = cos n − 1 c x sin c x n c + n − 1 n ∫ cos n − 2 c x d x ( n > 0 ) {\displaystyle \int \cos ^{n}cx\;dx={\frac {\cos ^{n-1}cx\sin cx}{nc}}+{\frac {n-1}{n}}\int \cos ^{n-2}cx\;dx\qquad {\mbox{(}}n>0{\mbox{)}}\,\!} ∫ x cos c x d x = cos c x c 2 + x sin c x c {\displaystyle \int x\cos cx\;dx={\frac {\cos cx}{c^{2}}}+{\frac {x\sin cx}{c}}\,\!} ∫ x n cos c x d x = x n sin c x c − n c ∫ x n − 1 sin c x d x {\displaystyle \int x^{n}\cos cx\;dx={\frac {x^{n}\sin cx}{c}}-{\frac {n}{c}}\int x^{n-1}\sin cx\;dx\,\!} ∫ − a 2 a 2 x 2 cos 2 n π x a d x = a 3 ( n 2 π 2 − 6 ) 24 n 2 π 2 ( n = 1 , 3 , 5... ) {\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\cos ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(}}n=1,3,5...{\mbox{)}}\,\!} ∫ cos c x x d x = ln | c x | + ∑ i = 1 ∞ ( − 1 ) i ( c x ) 2 i 2 i ⋅ ( 2 i ) ! {\displaystyle \int {\frac {\cos cx}{x}}dx=\ln |cx|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(cx)^{2i}}{2i\cdot (2i)!}}\,\!} ∫ cos c x x n d x = − cos c x ( n − 1 ) x n − 1 − c n − 1 ∫ sin c x x n − 1 d x ( n ≠ 1 ) {\displaystyle \int {\frac {\cos cx}{x^{n}}}dx=-{\frac {\cos cx}{(n-1)x^{n-1}}}-{\frac {c}{n-1}}\int {\frac {\sin cx}{x^{n-1}}}dx\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!} ∫ d x cos c x = 1 c ln | tan ( c x 2 + π 4 ) | {\displaystyle \int {\frac {dx}{\cos cx}}={\frac {1}{c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|} ∫ d x cos n c x = sin c x c ( n − 1 ) c o s n − 1 c x + n − 2 n − 1 ∫ d x cos n − 2 c x ( n > 1 ) {\displaystyle \int {\frac {dx}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)cos^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(}}n>1{\mbox{)}}\,\!} ∫ d x 1 + cos c x = 1 c tan c x 2 {\displaystyle \int {\frac {dx}{1+\cos cx}}={\frac {1}{c}}\tan {\frac {cx}{2}}\,\!} ∫ d x 1 − cos c x = − 1 c cot c x 2 {\displaystyle \int {\frac {dx}{1-\cos cx}}=-{\frac {1}{c}}\cot {\frac {cx}{2}}\,\!} ∫ x d x 1 + cos c x = x c tan c x 2 + 2 c 2 ln | cos c x 2 | {\displaystyle \int {\frac {x\;dx}{1+\cos cx}}={\frac {x}{c}}\tan {\frac {cx}{2}}+{\frac {2}{c^{2}}}\ln \left|\cos {\frac {cx}{2}}\right|} ∫ x d x 1 − cos c x = − x c cot c x 2 + 2 c 2 ln | sin c x 2 | {\displaystyle \int {\frac {x\;dx}{1-\cos cx}}=-{\frac {x}{c}}\cot {\frac {cx}{2}}+{\frac {2}{c^{2}}}\ln \left|\sin {\frac {cx}{2}}\right|} ∫ cos c x d x 1 + cos c x = x − 1 c tan c x 2 {\displaystyle \int {\frac {\cos cx\;dx}{1+\cos cx}}=x-{\frac {1}{c}}\tan {\frac {cx}{2}}\,\!} ∫ cos c x d x 1 − cos c x = − x − 1 c cot c x 2 {\displaystyle \int {\frac {\cos cx\;dx}{1-\cos cx}}=-x-{\frac {1}{c}}\cot {\frac {cx}{2}}\,\!} ∫ cos c 1 x cos c 2 x d x = sin ( c 1 − c 2 ) x 2 ( c 1 − c 2 ) + sin ( c 1 + c 2 ) x 2 ( c 1 + c 2 ) ( | c 1 | ≠ | c 2 | ) {\displaystyle \int \cos c_{1}x\cos c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}+{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(}}|c_{1}|\neq |c_{2}|{\mbox{)}}\,\!} 特殊值 更多信息 , ... 弳度 0 {\displaystyle 0} π 12 {\displaystyle {\frac {\pi }{12}}} π 10 {\displaystyle {\frac {\pi }{10}}} π 6 {\displaystyle {\frac {\pi }{6}}} π 5 {\displaystyle {\frac {\pi }{5}}} π 4 {\displaystyle {\frac {\pi }{4}}} 3 π 10 {\displaystyle {\frac {3\pi }{10}}} π 3 {\displaystyle {\frac {\pi }{3}}} 2 π 5 {\displaystyle {\frac {2\pi }{5}}} 5 π 12 {\displaystyle {\frac {5\pi }{12}}} π 2 {\displaystyle {\frac {\pi }{2}}} 角度 0 ∘ {\displaystyle 0^{\circ }} 15 ∘ {\displaystyle 15^{\circ }} 18 ∘ {\displaystyle 18^{\circ }} 30 ∘ {\displaystyle 30^{\circ }} 36 ∘ {\displaystyle 36^{\circ }} 45 ∘ {\displaystyle 45^{\circ }} 54 ∘ {\displaystyle 54^{\circ }} 60 ∘ {\displaystyle 60^{\circ }} 72 ∘ {\displaystyle 72^{\circ }} 75 ∘ {\displaystyle 75^{\circ }} 90 ∘ {\displaystyle 90^{\circ }} cos 1 {\displaystyle 1} 6 + 2 4 {\displaystyle {\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}} 2 ( 5 + 5 ) 4 {\displaystyle {\frac {\sqrt {2\left(5+{\sqrt {5}}\right)}}{4}}} 3 2 {\displaystyle {\frac {\sqrt {3}}{2}}} 5 + 1 4 {\displaystyle {\frac {{\sqrt {5}}+1}{4}}} 2 2 {\displaystyle {\frac {\sqrt {2}}{2}}} 2 ( 5 − 5 ) 4 {\displaystyle {\frac {\sqrt {2\left(5-{\sqrt {5}}\right)}}{4}}} 1 2 {\displaystyle {\frac {1}{2}}} 5 − 1 4 {\displaystyle {\frac {{\sqrt {5}}-1}{4}}} 6 − 2 4 {\displaystyle {\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}} 0 {\displaystyle 0} 关闭 更多信息 , ... 角度 0 ∘ {\displaystyle 0^{\circ }} 30 ∘ {\displaystyle 30^{\circ }} 45 ∘ {\displaystyle 45^{\circ }} 60 ∘ {\displaystyle 60^{\circ }} 90 ∘ {\displaystyle 90^{\circ }} cos 4 2 = 1 {\displaystyle {\frac {\sqrt {4}}{2}}=1} 3 2 {\displaystyle {\frac {\sqrt {3}}{2}}} 2 2 {\displaystyle {\frac {\sqrt {2}}{2}}} 1 2 = 1 2 {\displaystyle {\frac {\sqrt {1}}{2}}={1 \over 2}} 0 2 = 0 {\displaystyle {\frac {\sqrt {0}}{2}}=0} 关闭 余弦定理 主条目:余弦定理 余弦定理(也叫做余弦公式)是勾股定理的扩展: c 2 = a 2 + b 2 − 2 a b cos C {\displaystyle c^{2}=a^{2}+b^{2}-2ab\cos C\,} 也表示为: cos C = a 2 + b 2 − c 2 2 a b {\displaystyle \cos C={\frac {a^{2}+b^{2}-c^{2}}{2ab}}\,\!} 这个定理也可以通过把三角形分为两个直角三角形来证明。余弦定律用于在一个三角形的两个边和一个角已知时确定未知的数据。 如果这个角不包含在这两个边之间,三角形可能不是唯一的(边-边-角全等歧义)。小心余弦定律的这种歧义情况。 參見 维基共享资源上的相关多媒体资源:餘弦 数学主题 正弦 正切 餘切 正割 餘割 三角学 三角函数 函數 正弦波 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.