Loading AI tools
未知项次数最高为3的整式方程 来自维基百科,自由的百科全书
三次方程是未知项總次数最高为3的整式方程,一元三次方程一般形式為
本條目只解釋一元三次方程,而且簡稱之為三次方程式。
中國唐朝数学家王孝通在武德九年(626年)前后所著的《緝古算經》中建立了25个三次多项式方程和提出三次方程实根的数值解法。[1]
波斯数学家欧玛尔·海亚姆(1048年-1123年)通过用圆锥截面与圆相交的方法構建了三次方程的解法。他说明了怎样用这种几何方法利用三角法表得到数字式的答案。
中国南宋的数学家秦九韶在他1247年编写的《数书九章》一书中提出了高次方程的数值解法秦九韶算法,提出“商常为正,实常为负,从常为正,益常为负”的原则。
在十六世纪早期,意大利数学家费罗找到了能解一种三次方程的方法,也就是形如的方程。事实上,如果我们允许是複数,所有的三次方程都能变成这种形式,但在那个时候人们不知道複数。
尼科洛·塔爾塔利亞被認為是最早得出三次方程式一般解的人。1553年他在一場數學競賽中解出所有三次方程式的問題。隨後卡尔丹诺拜訪了塔爾塔利亞請教三次方程式解法並得到了啟發。卡尔丹诺注意到塔爾塔利亞的方法有时需要他给复数开平方。他甚至在《数学大典》裡包括了这些複數的计算,但他并不真正理解它。拉斐尔·邦贝利(Rafael Bombelli)详细地研究了这个问题,并因此被人们认为是複数的发现者。
当时,方程有一个实根和两个共轭複根;
当时,方程有三个实根:当
时,方程有一个三重实根;
当
时,方程的三个实根中有两个相等;
当时,方程有三个不等的实根。
红色字体部分为判别式。
当时,方程有一个实根和两个共轭複根;
当时,方程有三个实根:
当时,方程有一个三重实根;
当时,方程的三个实根中有两个相等;
当时,方程有三个不等的实根。
,其中。
若令,则
令為域,可以進行開平方或立方運算。要解方程只需找到一個根,然後把方程除以,就得到一個二次方程,而我們已會解二次方程。
在一個代數封閉域,所有三次方程都有三個根。複數域就是這樣一個域,這是代數基本定理的結果。
解方程步驟:
接下來,和是和的立方根,適合,,最後得出。
在域裡,若和是立方根,其它的立方根就是和,當然還有和,其中,是1的一个复数立方根。
因為乘積固定,所以可能的是,和。因此三次方程的其它根是和。
最先嘗試解的三次方程是實係數(而且是整數)。因為實數域並非代數封閉,方程的根的數目不一定是3個。所遺漏的根都在裡,就是的代數閉包。其中差異出現於和的計算中取平方根時。取立方根時則沒有類似問題。
可以證明實數根數目依賴於輔助方程的判別式,
注意到实系数三次方程有一實根存在,這是因為非常數多項式在和的極限是無窮大,對奇次多項式這兩個極限異號,又因为多項式是連續函數,所以從介值定理可知它在某點的值為0。
解。
我們依照上述步驟進行:
该方程的另外两个根:
这是一个历史上的例子,因为它是邦别利考虑的方程。
方程是。
从函数算出判别式的值,知道这方程有三实根,所以比上例更容易找到一个根。
前两步都不需要做,做第三步:,,。
和是的根。这方程的判别式已算出是负数,所以只有实根。很吊诡地,这方法必须用到复数求出全是实数的根。这是发明复数的一个理由:复数是解方程必需工具,即使方程或许只有实根。
我们解出和。取复数立方根不同于实数,有两种方法:几何方法,用到辐角和模(把辐角除以3取模的立方根);代数方法,分开复数的实部和虚部: 现设。
得到和,也就是,而是其共轭:。
归结得,可以立时验证出来。
其它根是和,其中。
当是负,和共轭,故此和也是(要适当选取立方根,记得);所以我们可确保是实数,还有和。
,其中系数皆为实数。
重根判别式:;
总判别式:。
。
让,得:
;
;
。
让,得:
;
。
让,得:
;
;
。
设
将其微分,可得
设,可得。
由函数取极值的充分条件可知:
,是的极大值点;
,是的极小值点;
,是的拐点。
可知:
,的驻点为极大值点;
,的驻点为极小值点;
,的驻点为拐点。
此章节尚無任何内容,需要扩充。 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.