Loading AI tools
研究形狀、大小、圖形的相對位置等的數學分支 来自维基百科,自由的百科全书
幾何學(英语:Geometry,古希臘語:γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。
許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準[1]。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。
勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。
在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。
几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等[2]。
現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。
幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。
幾何一詞源於《幾何原本》的翻譯。《幾何原本》是世界數學史上影響最為久遠,最大的一部數學教科书。《幾何原本》傳入中國,首先應歸功於明末科學家徐光啟。徐光啟和利瑪竇《幾何原本》中譯本的一個偉大貢獻是確定了研究圖形的這一學科中文名稱為「幾何」,並確定了幾何學中一些基本術語的譯名。「幾何」的原文是「geometria」(英文geometry),徐光啟和利瑪竇在翻譯時,取「geo」的音為「幾何」(明朝音:gi-ho),而「幾何」二字中文原意又有「衡量大小」的意思。用「幾何」譯「geometria」(英文geometry),音義兼顧,確是神來之筆。幾何學中最基本的一些術語,如點、線、直線、平行線、角、三角形和四邊形等中文譯名,都是這個譯本定下來的。這些譯名一直流傳到今天,且東渡到漢字文化圈的日本、朝鮮等國(越南語則使用獨自翻譯的越製漢語「形學(hình học)」一詞),影響深遠。
几何学开始的最早记录可以追踪到公元前2世纪的古代埃及和美索不达米亚。[3][4]早期的几何学是有关长度、角度、面积和体积的经验性定律的收集,这些都是因为实际需要(比如勘探、建筑、天文和一些手工业)而发展的。最早的已知有关几何学的文本是埃及的莱因德纸草书(公元前2000-1800年)和莫斯科数学纸草书(约公元前1890年),以及古巴比伦的泥石板(比如“普林頓 322”(公元前1900年))。比如,莫斯科纸草书上给出了如何计算棱台体积的公式。[5]埃及南部的古代努比亚人曾经建立了一套几何学系统,包括有太阳钟的早期版本。[6][7]
幾何學有悠久的歷史。最古老的歐氏幾何基於一組公設和定義,人們在公設的基礎上運用基本的邏輯推理構做出一系列的命題。可以說,《幾何原本》是公理化系統的第一個範例,對西方數學思想的發展影響深遠。
一千年後,笛卡兒在《方法論》的附錄《幾何》中,將坐標引入幾何,帶來革命性進步。從此幾何問題能以解析式的形式來表達。
歐幾里得幾何學的第五公設,由於並不自明,引起了歷代數學家的關注。最終,由羅巴切夫斯基和黎曼建立起兩種非歐幾何[8]。
幾何學的現代化則歸功於克萊因、希爾伯特等人。克萊因在普呂克的影響下,應用群論的觀點將幾何變換視為特定不變量約束下的變換群。而希爾比特為幾何奠定了真正的科學的公理化基礎。應該指出幾何學的公理化,影響是極其深遠的,它對整個數學的嚴密化具有極其重要的先導作用。它對數理邏輯學家的啟發也是相當深刻的。
幾何最早的有記錄的開端可以追溯到古埃及(參看古埃及數學),古印度(參看古印度數學),和古巴比倫(參看古巴比倫數學),其年代大約始於前3000年。早期的幾何學是關於長度,角度,面積和體積的經驗原理,被用於滿足在測繪,建築,天文,和各種工藝製作中的實際需要。在它們中間,有令人驚訝的複雜的原理,以至於現代的數學家很難不用微積分來推導它們。例如,埃及和巴比倫人都在畢達哥拉斯之前1500年就知道了畢達哥拉斯定理(勾股定理);埃及人有方形棱錐的錐台(截頭金字塔形)的體積的正確公式;而巴比倫有一個三角函數表。
幾何這個詞最早來自於希臘語「γεωμετρία」,由「γέα」(土地)和「μετρεĭν」(測量)兩個詞合成而來,指土地的測量,即測地術。後來拉丁語化為「geometria」。中文中的「幾何」一詞,最早是在明代利瑪竇、徐光啟合譯《幾何原本》時,由徐光啟所創。當時並未給出所依根據,後世多認為一方面幾何可能是拉丁化的希臘語GEO的音譯,另一方面由於《幾何原本》中也有利用幾何方式來闡述數論的內容,也可能是magnitude(多少)的意譯,所以一般認為幾何是geometria的音、意並譯。用「幾何」的音來表達,關於數與量的,用「幾何」的義來表達。換句話說,徐光啟心目中的「幾何」,可能就是今天我們所謂的「數學」。所以他為譯本所取的名字,以今日用語再翻譯一次,就是:《基礎數學》。所以如果了解《幾何原本》為《基礎數學》,它當然會包含像輾轉相除法這樣的課題。希臘語GEO+METRY按照字源意思是「地理測算」的意思,所以依照字面意思對照現代分類相當於測算學,分平面測算學與立體測算學。
1607年出版的《幾何原本》中關於幾何的譯法在當時並未通行,同時代也存在著另一種譯名——「形學」,如狄考文、鄒立文、劉永錫編譯的《形學備旨》,在當時也有一定的影響。在1857年李善蘭、偉烈亞力續譯的《幾何原本》後9卷出版後,幾何之名雖然得到了一定的重視,但是直到20世紀初的時候才有了較明顯的取代形學一詞的趨勢,如1910年《形學備旨》第11次印刷成都翻刊本徐樹勳就將其改名為《續幾何》。直至20世紀中期,已鮮有「形學」一詞的使用出現。
幾何學起源於一些實務上有關量測、面積及體積的科學。在許多方面都已找到相當的公式,例如畢氏定理、圓的周長及面積、三角形的面積、圓柱、球及四角錐的體積等。泰勒斯發展了以幾何物件的相似為基礎,計算一些無法直接量測的高度或距離的方法。天文學的發展也帶來三角學及球面三角學的誕生,也有一些對應的計算技巧。
歐幾里德在所著的《幾何原本》中作了更抽象化的處理。歐幾里德引入了一些公理來說明點、線和面一些基本的或是可自證的性質。接著再用數學的思考再去推導其他的性質。幾何原本中的推導以其嚴謹性著稱,稱為公理化幾何。在十九世紀初時,尼古拉·罗巴切夫斯基(1792–1856)、鮑耶·亞諾什(1802–1860)及卡爾·弗里德里希·高斯(1777–1855)發展了非歐幾何,其他數學家開始再度對此一領域有興趣。二十世紀的大卫·希尔伯特試圖用公理化的理解為幾何學提供現代的基礎。
古典的几何学家花了許多心力要繪製定理中繪述的幾何物件。傳統上,可以使用的工具是圓規及沒有刻度的直尺,需要在有限次數的繪製內完成圖形。有些圖形很難(甚至無法)單純用尺規作圖求得,需要配合拋物線、其他曲線或是機械工具才能完成。
古希臘的畢達格拉斯就已考慮過數字在幾何中的角色。不過因為不可通約長度的出現,不符合他的哲學觀點,因此他們放棄抽象的幾何量,改用實際上的幾何量,例如圖案的長及面積。後來勒內·笛卡兒利用坐標系再讓數字和幾何連結,笛卡兒也發現根據一圖示的代數表現可以知道此形狀,後來笛卡兒用的坐標系就稱為笛卡兒坐標系。
欧几里得所提出的抽象概念,进而使得《几何原本》列入了最有影响力的书籍之一,欧几里得提出五大公理和公设,揭示了点线面的自可证的基本性质,他一直试图通过其他数学理论来严谨性推导其他性质,而这也是欧几里得陈述的最特色的地方,并使得几何更加公理化和系统化。19世纪初,尼古拉·罗巴切夫斯基 (1792–1856), 鲍耶·亚诺什 (1802–1860), 卡爾·弗里德里希·高斯 (1777–1855)对非欧几里得几何的探索使得几何学领域又得以重新发展,而在20世纪初,大卫希尔伯特把公理性证明的引入成就了现代几何学的出现。
点作为欧几里得空间的基本构成,通过很多方式定义,包括欧几里得所定义的“点不占据空间[9]”以及在代数与嵌套空间的引用[10]。在几何学的众多领域,包括分析几何,微分几何,以及拓扑学,所有的单元都是点构造出来的,然而,有些几何学的研究缺乏对点这个元素的参照。[11]
欧几里得把线形容成‘在点之间均匀铺着’的‘没有宽度的长度’[9],在现代数学体系已给知的多元几何中,线的定义也相当的接近几何学中的定义,例如在解析几何中,点坐标的集合所构成的一个已知一次方程称为线,[12]而在像重合幾何这种更抽象的设定中,线可以是个单独的对象,而区别于点的集合所构成的情况[13]。在微分几何中,对曲率不为0的流形,测地线往往更好能表达线的概念。 [14]
二维,光滑且无限延展的平层构成了平面,[9]几何学到处都会用到面,例如,研究拓扑学的曲面对象可以看作一个没有距离和角度做参照的平层[15];对在仿射空间的面,没有参照距离却有共线性和曲率的研究[16]。或是在高斯平面(复平面)需要用到複分析[17]等。
欧几里得所描述的平面角,是指在一个平面内两条相交却不平行的直线中间的倾角[9] 在现代几何学名词中,共有一个顶点的两条射线形成角的两边,而所形成的角度称为角。 [18]
在欧几里得几何中,角一般用来研究多边形或三角形,也有对其本身的研究[9]对三角形或单位圆中对角的研究构成了三角学的基础[19]。
歐幾里德幾何和計算幾何、计算机图形、凸幾何、关联几何、有限幾何學、離散幾何學,以及组合数学中的部份領域都有密切關係。歐幾里德幾何和歐幾里德群在晶體學上的進展和哈羅德·斯科特·麥克唐納·考克斯特的研究已受到注意,可以在考克斯特群及多胞形的理論中看到。幾何群論是將幾何學延伸到離散群中,有關其幾何結構及代數技術的研究。
微分幾何因著愛因斯坦的廣義相對論假設有曲率的宇宙,因此逐漸受到数学物理的重視。現代的微分幾何是本質性的,將空間視為是微分流形,其幾何結構則由黎曼流形處理,包括如何量測二點之間的距離等。不再只是歐幾里德幾何中先驗的一部份。
拓撲學是轉換幾何中的一部份,專注在同胚的轉換,拓撲學在二十世紀有顯著的進展,簡單來說,拓撲學可以說是「橡皮下的幾何學」。當代的几何拓扑学、微分拓扑,以及像莫尔斯理论等子領域,被大部份數學家視為是幾何學的一部份。代數拓撲和点集拓扑学則被視為是另一個新的領域。
解析幾何是歐幾里德幾何的現代版本,從1950年代末到1970年代中有大幅的進展,主要是因為讓-皮埃爾·塞爾及亚历山大·格罗森迪克的貢獻,這也產生了概形以及代數拓撲學一些方法的重視,包括許多的上同調理論。千禧年大獎難題中的霍奇猜想就是解析幾何學的問題。
低維度代數簇、代數曲線及代數曲面的研究以及三維代數簇(algebraic threefolds)的研究都有很多進展。Gröbner基理論及實代數幾何應用在現在解析幾何的一些子領域中。算術幾何(Arithmetic geometry)是結合了解析幾何及數論的一個新的領域。另外一個研究方向是模空间及複幾何。代數幾何的方法廣泛的用在弦理論及膜宇宙理論中。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.