- 加法是一可交換的運算(兩個數不論順序為何,它加起來的總和都一樣)。
- 減法是加法的逆運算。
- 減去一個數和加上一個此數的負數是一樣意思的:
- 例如:若 ,則 。
- 乘法是一可交換的運算。
- 除法是乘法的逆運算。
- 除去一個數和乘上一個此數的倒數是一樣意思的:
- 例如:若 ,則 。
- 冪不是一可交換的運算。
- 但冪卻有兩個逆運算:對數 和 开方(如平方根)。
- 例如:若 ,則 。
- 例如:若 ,則 ,即 ,。
- 負數的平方根不存在於實數內。(參考:複數)
- 加法的結合律性質:。
- 乘法的結合律性質:。
- 對應加法的乘法分配律性質:。
- 對應乘法的冪分配律性質:。
- 冪的乘法:。
- 冪的冪:。
- (等於的自反性)。
- 若 ,則 (等於的對稱性)。
- 若 且 ,則 (等於的遞移律)。
- 若 ,則 。
- 若 且 ,則 。
- 若 ,則對任一 c,(等於的可加性)。
- 若 且 ,則 = 。
- 若 ,則對任一 c,(等於的可乘性)。
- 若兩個符號相等,則一個總是能替換另一個(替換原理)。
- 若 且 ,則 (不等式的遞移律)。
- 若 ,則對任一 c,。
- 若 且 ,則 。
- 若 且 ,則 。
最簡單的方程為一元一次方程,它們是含有一個常數和一沒有冪的變數。例如:
其中心解法為在等式的兩邊同時以相同數字做加、減、乘、除,以使變數單獨留在等式的一側。一旦變數獨立了,等式的另一邊即是此變數的值。例如,將上面式子兩邊同時減去4:
- ,
簡化後即為
再同時除以2:
再簡化後即為答案:
一般的情形
也可以依同樣的方式得出答案來:
【這就是一元一次方程簡單的說明】
在線性方程組內,如兩個變數的方程組內有兩個方程式的話,通常可以找出可同時滿足兩個方程式的兩個變數。
下面為線性方程組的一個例子,有兩個求解的方法:
另一種求解的方法為替代。
的等值可以由兩個方程式中的其中一種推出。我們使用第二個方程:
由方程的兩邊減去 :
再乘上 -1:
將此 值放入原方程組的第一個方程式:
在方程的兩端加上 2:
此可簡化成
- 。
將此值代回兩個方程式中的一個,可求得和上一個方法所求得的相同解答。
注意:這並不是解這類特殊情況的唯一方法;在這個方法裡也是一樣的, 也可以在 之前求得。
Mirsky, Lawrence (1990) An Introduction to Linear Algebra Library of Congress. p.72-3. ISBN 0-486-66434-1.