反三角函數係三角函數嘅反函數。 More information , ... 名 常用符號 定義 定義域 值域 反正弦 y = arcsin x {\displaystyle y=\arcsin x} x = sin y {\displaystyle x=\sin y} [ − 1 , 1 ] {\displaystyle [-1,1]} [ − π 2 , π 2 ] {\displaystyle [-{\frac {\pi }{2}},{\frac {\pi }{2}}]} 反餘弦 y = arccos x {\displaystyle y=\arccos x} x = cos y {\displaystyle x=\cos y} [ − 1 , 1 ] {\displaystyle [-1,1]} [ 0 , π ] {\displaystyle [0,\pi ]} 反正切 y = arctan x {\displaystyle y=\arctan x} x = tan y {\displaystyle x=\tan y} R {\displaystyle \mathbb {R} } ( − π 2 , π 2 ) {\displaystyle (-{\frac {\pi }{2}},{\frac {\pi }{2}})} 反餘切 y = arccot x {\displaystyle y=\operatorname {arccot} x} x = cot y {\displaystyle x=\cot y} R {\displaystyle \mathbb {R} } ( 0 , π ) {\displaystyle (0,\pi )} 反正割 y = arcsec x {\displaystyle y=\operatorname {arcsec} x} x = sec y {\displaystyle x=\sec y} ( − ∞ , − 1 ] ∪ [ 1 , + ∞ ) {\displaystyle (-\infty ,-1]\cup [1,+\infty )} [ 0 , π 2 ) ∪ ( π 2 , π ] {\displaystyle [0,{\frac {\pi }{2}})\cup ({\frac {\pi }{2}},\pi ]} 反餘割 y = arccsc x {\displaystyle y=\operatorname {arccsc} x} x = csc y {\displaystyle x=\csc y} ( − ∞ , − 1 ] ∪ [ 1 , + ∞ ) {\displaystyle (-\infty ,-1]\cup [1,+\infty )} [ − π 2 , 0 ) ∪ ( 0 , π 2 ] {\displaystyle [-{\frac {\pi }{2}},0)\cup (0,{\frac {\pi }{2}}]} Close 呢篇同數學相關係楔位文。歡迎幫維基百科擴寫佢。睇 • 論 • 改 • 歷 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.