Loading AI tools
来自维基百科,自由的百科全书
本因坊家(ほんいんぼうけ)為日本江戶時代的圍棋四大家(本因坊家、安井家、井上家、林家)之首,以仕於織田信長、豐臣秀吉和德川家康的日海(本因坊算砂)為開祖的家系。「本因坊」之名是來自算砂擔任住持的京都寂光寺的塔頭。
共世襲了二十一世,日本江戶時代圍棋名人共十位,本因坊家就有七位,足見其影響力,後來本因坊秀哉將此名捐出,做為頭銜戰名,是為本因坊戰。
家督/跡目 | 出生年 | 去世年 | 繼任年 | 棋力 | 法號 |
---|---|---|---|---|---|
世襲本因坊 | |||||
第一世本因坊算砂 | 1559年 | 1623年 | 1603年 | 名人 | 日海 |
第二世本因坊算悅 | 1611年 | 1658年 | 1630年 | 上手[1] | 日信 |
第三世本因坊道悅 | 1636年 | 1727年 | 1658年 | 名人格[2] | 日勝 |
第四世本因坊道策 | 1645年 | 1702年 | 1677年 | 名人、碁所、棋聖 | 日忠 |
跡目道的 | 1669年 | 1690年 | 1684年[3] | 上手 | 日勇 |
跡目策元 | 1675年 | 1699年 | 1692年 | 上手[4] | 日雲 |
第五世本因坊道知 | 1690年 | 1727年 | 1702年 | 名人、碁所 | 日深 |
第六世本因坊知伯 | 1710年 | 1733年 | 1727年 | 六段 | 日宥 |
第七世本因坊秀伯 | 1716年 | 1741年 | 1733年 | 六段 | 日了 |
第八世本因坊伯元 | 1726年 | 1754年 | 1741年 | 六段 | 日淨 |
第九世本因坊察元 | 1733年 | 1788年 | 1754年 | 名人、碁所 | 日義 |
第十世本因坊烈元 | 1750年 | 1808年 | 1788年 | 準名人[5] | 日實 |
第十一世本因坊元丈 | 1775年 | 1832年 | 1808年 | 準名人 | 日真 |
跡目知策[6][7] | 1786年 | 1812年 | 不詳 | 上手[8] | 知策 |
第十二世本因坊丈和 | 1787年 | 1847年 | 1832年 | 名人、碁所、棋聖 | 日竟 |
第十三世本因坊丈策 | 1803年 | 1847年 | 1838年 | 上手 | 日秀 |
第十四世本因坊秀和 | 1820年 | 1873年 | 1848年 | 準名人 | 日悅 |
跡目秀策 | 1829年 | 1862年 | 1848年 | 上手、棋聖 | 日量 |
第十五世本因坊秀悅 | 1850年 | 1907年 | 1873年 | 六段 | 日妙 |
第十六世本因坊秀元 | 1854年 | 1917年 | 1879年 | 四段 | 日存 |
第十七世本因坊秀榮[9] | 1852年 | 1907年 | 1884年 | 五段 | 日達 |
第十八世本因坊秀甫 | 1838年 | 1886年 | 1886年 | 準名人 | 日壽 |
第十九世本因坊秀榮 | 1852年 | 1907年 | 1886年 | 名人 | 日達 |
雁金準一[10] | 1879年 | 1959年 | 1907年 | 名譽九段[11] | |
第二十世本因坊秀元 | 1854年 | 1917年 | 1907年 | 六段 | 日存[12] |
第二十一世本因坊秀哉 | 1874年 | 1940年 | 1908年 | 名人 | 日溫 |
名譽本因坊 | |||||
第二十二世本因坊秀格 | 1915年 | 1986年 | 1957年 | 九段 | |
第二十三世本因坊榮壽 | 1920年 | 2010年 | 1965年 | 九段 | |
第二十四世本因坊秀芳 | 1948年 | - | 1975年 | 九段 | |
第二十五世本因坊治勳 | 1956年 | - | 1993年 | 九段、名譽名人 | |
第二十六世本因坊文裕 | 1989年 | - | 2016年 | 九段、名譽棋聖、名譽天元、名譽碁聖 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.