Remove ads
来自维基百科,自由的百科全书
恰薩爾十四面體是一種可以對應到拓撲環面的非凸多面體,由阿科斯·恰薩爾於1949年發現。[1]這個多面體中間有一個孔洞,由14個不等邊三角形面組成。特別地,這個多面體不存在對角線,也就是說任兩個頂點之間所形成的線段都位於其表面邊界上,同時,其也對應到七的頂點的完全圖。[2]:139-143
恰薩爾十四面體由14個面、21條邊和7個頂點組成。在這七個頂點中,每個頂點都是6個三角形的公共頂點,其可以分成3組和一個單獨的頂點,三組兩兩相等,與其對偶多面體——希洛西七面體的面對應[3]。在其14個面中,有2個等邊三角形、2個等腰三角形和10個鈍角三角形。[3]
恰薩爾十四面體是一種不存在對角線的流形多面體結構。[1]也就是說,對恰薩爾十四面體的所有頂點而言,任意兩個頂點間皆有一條邊連接,因此這個多面體不存在任何不在邊界上且連接兩個頂點的線段。這種性質目前已知僅有正四面體和恰薩爾十四面體擁有。這種性質在圖論中稱為完全圖,也就是說恰薩爾十四面體可以對應到七個頂點的完全圖。[4][5]
若一個在一個有h個孔洞的環面構建一個邊界包含v個頂點的多面體,且所有頂點中任兩個頂點間都有邊相連,則其部分的歐拉特徵數會具有以下關係:[6] 對於零個孔、四個頂點(h=0、v=4)的四面體和1個孔、7個頂點(h=1、v=7)的恰薩爾十四面體都滿足這個方程式。下一個可能的整數解是6個孔、12個頂點(h=6、v=12)具有44個面和66個條邊的多面體。然而目前並不知道是否存在實體的多面體滿足這個特性,而非僅能以抽象多面體的方式存在。更無法確定這樣的多面體是否能在更高虧格的環面下存在。[7]更一般地,當v除以12餘0、3、4或7時,上述等式給出的h值皆為整數。[8]
恰薩爾十四面體的最短邊長為單位長,且幾何中心位於原點時,此時7頂點的座標分別為:[9][10]
其中,有正負號者代表兩個頂點。在這樣的頂點配置下,恰薩爾十四面體21條邊中共有8個不同的邊長,分別為:(兩條邊)、10、(四條邊)、(兩條邊)、(兩條邊)、(兩條邊)、(兩條邊)、24(六條邊)。[3]
若一恰薩爾十四面體最短邊長為單位長,則其體積約為8.50517立方單位、表面積為:[11]
恰薩爾十四面體對應的圖和其對偶圖可以用來查找斯坦納三元系統(Steiner triple systems)[12][13]。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.