在物理學和數學中的向量分析中,亥姆霍茲定理,[1][2] 或稱向量分析基本定理,[3][4][5][6][7][8][9] 指出對於任意足夠光滑、快速衰減的三維向量場可分解為一個無旋向量場和一個螺線向量場的和,這個過程被稱作亥姆霍茲分解。此定理以物理學家赫爾曼·馮·亥姆霍茲為名。[10] 這意味著任何向量場 F,都可以視為兩個勢場(純量勢 φ 和向量勢 A)之和。 定理內容 假定 F 為定義在有界區域 V ⊆ R3 裡的二次連續可微向量場,且 S 為 V 的包圍面,則 F 可被分解成無旋度及無散度兩部份:[11] F = − ∇ Φ + ∇ × A {\displaystyle \mathbf {F} =-{\boldsymbol {\nabla }}\Phi +{\boldsymbol {\nabla }}\times \mathbf {A} } , 其中 Φ ( r ) = 1 4 π ∫ V ∇ ′ ⋅ F ( r ′ ) | r − r ′ | d V ′ − 1 4 π ∮ S n ^ ′ ⋅ F ( r ′ ) | r − r ′ | d S ′ {\displaystyle \Phi \left(\mathbf {r} \right)={\frac {1}{4\pi }}\int _{V}{\frac {{\boldsymbol {\nabla }}'\cdot \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-{\frac {1}{4\pi }}\oint _{S}\mathbf {\hat {n}} '\cdot {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'} A ( r ) = 1 4 π ∫ V ∇ ′ × F ( r ′ ) | r − r ′ | d V ′ − 1 4 π ∮ S n ^ ′ × F ( r ′ ) | r − r ′ | d S ′ {\displaystyle \mathbf {A} \left(\mathbf {r} \right)={\frac {1}{4\pi }}\int _{V}{\frac {{\boldsymbol {\nabla }}'\times \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-{\frac {1}{4\pi }}\oint _{S}\mathbf {\hat {n}} '\times {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'} 如果 V = R3,且 F 在無窮遠處消失的比 1 / r {\displaystyle 1/r} 快,則純量勢及向量勢的第二項為零,也就是說 [12] Φ ( r ) = 1 4 π ∫ all space ∇ ′ ⋅ F ( r ′ ) | r − r ′ | d V ′ {\displaystyle \Phi \left(\mathbf {r} \right)={\frac {1}{4\pi }}\int _{\text{all space}}{\frac {{\boldsymbol {\nabla }}'\cdot \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'} A ( r ) = 1 4 π ∫ all space ∇ ′ × F ( r ′ ) | r − r ′ | d V ′ {\displaystyle \mathbf {A} \left(\mathbf {r} \right)={\frac {1}{4\pi }}\int _{\text{all space}}{\frac {{\boldsymbol {\nabla }}'\times \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'} 推導 假定我們有一個向量函數 F ( r ) {\displaystyle \mathbf {F} \left(\mathbf {r} \right)} ,且其旋度 ∇ × F {\displaystyle {\boldsymbol {\nabla }}\times \mathbf {F} } 及散度 ∇ ⋅ F {\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {F} } 已知。利用狄拉克δ函數可將函數改寫成 δ ( r − r ′ ) = − 1 4 π ∇ 2 1 | r − r ′ | {\displaystyle \delta \left(\mathbf {r} -\mathbf {r} '\right)=-{\frac {1}{4\pi }}\nabla ^{2}{\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}} , F ( r ) = ∫ V F ( r ′ ) δ ( r − r ′ ) d V ′ = ∫ V F ( r ′ ) ( − 1 4 π ∇ 2 1 | r − r ′ | ) d V ′ = − 1 4 π ∇ 2 ∫ V F ( r ′ ) | r − r ′ | d V ′ {\displaystyle \mathbf {F} \left(\mathbf {r} \right)=\int _{V}\mathbf {F} \left(\mathbf {r} '\right)\delta \left(\mathbf {r} -\mathbf {r} '\right)\mathrm {d} V'=\int _{V}\mathbf {F} \left(\mathbf {r} '\right)\left(-{\frac {1}{4\pi }}\nabla ^{2}{\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}\right)\mathrm {d} V'=-{\frac {1}{4\pi }}\nabla ^{2}\int _{V}{\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'} 。 利用以下等式 ∇ 2 a = ∇ ( ∇ ⋅ a ) − ∇ × ( ∇ × a ) {\displaystyle \nabla ^{2}\mathbf {a} ={\boldsymbol {\nabla }}\left({\boldsymbol {\nabla }}\cdot \mathbf {a} \right)-{\boldsymbol {\nabla }}\times \left({\boldsymbol {\nabla }}\times \mathbf {a} \right)} , 可得 F ( r ) = − 1 4 π [ ∇ ( ∇ ⋅ ∫ V F ( r ′ ) | r − r ′ | d V ′ ) − ∇ × ( ∇ × ∫ V F ( r ′ ) | r − r ′ | d V ′ ) ] {\displaystyle \mathbf {F} \left(\mathbf {r} \right)=-{\frac {1}{4\pi }}\left[{\boldsymbol {\nabla }}\left({\boldsymbol {\nabla }}\cdot \int _{V}{\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)-{\boldsymbol {\nabla }}\times \left({\boldsymbol {\nabla }}\times \int _{V}{\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)\right]} = − 1 4 π [ ∇ ( ∫ V F ( r ′ ) ⋅ ∇ 1 | r − r ′ | d V ′ ) + ∇ × ( ∫ V F ( r ′ ) × ∇ 1 | r − r ′ | d V ′ ) ] {\displaystyle =-{\frac {1}{4\pi }}\left[{\boldsymbol {\nabla }}\left(\int _{V}\mathbf {F} \left(\mathbf {r} '\right)\cdot {\boldsymbol {\nabla }}{\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)+{\boldsymbol {\nabla }}\times \left(\int _{V}\mathbf {F} \left(\mathbf {r} '\right)\times {\boldsymbol {\nabla }}{\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)\right]} 。 注意到 ∇ 1 | r − r ′ | = − ∇ ′ 1 | r − r ′ | {\displaystyle {\boldsymbol {\nabla }}{\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}=-{\boldsymbol {\nabla }}'{\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}} ,我們可將上式改寫成 F ( r ) = − 1 4 π [ − ∇ ( ∫ V F ( r ′ ) ⋅ ∇ ′ 1 | r − r ′ | d V ′ ) − ∇ × ( ∫ V F ( r ′ ) × ∇ ′ 1 | r − r ′ | d V ′ ) ] {\displaystyle \mathbf {F} \left(\mathbf {r} \right)=-{\frac {1}{4\pi }}\left[-{\boldsymbol {\nabla }}\left(\int _{V}\mathbf {F} \left(\mathbf {r} '\right)\cdot {\boldsymbol {\nabla }}'{\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)-{\boldsymbol {\nabla }}\times \left(\int _{V}\mathbf {F} \left(\mathbf {r} '\right)\times {\boldsymbol {\nabla }}'{\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)\right]} 。 利用以下二等式, a ⋅ ∇ ψ = − ψ ( ∇ ⋅ a ) + ∇ ⋅ ( ψ a ) {\displaystyle \mathbf {a} \cdot {\boldsymbol {\nabla }}\psi =-\psi \left({\boldsymbol {\nabla }}\cdot \mathbf {a} \right)+{\boldsymbol {\nabla }}\cdot \left(\psi \mathbf {a} \right)} a × ∇ ψ = ψ ( ∇ × a ) − ∇ × ( ψ a ) {\displaystyle \mathbf {a} \times {\boldsymbol {\nabla }}\psi =\psi \left({\boldsymbol {\nabla }}\times \mathbf {a} \right)-{\boldsymbol {\nabla }}\times \left(\psi \mathbf {a} \right)} 。 可得 F ( r ) = − 1 4 π [ − ∇ ( − ∫ V ∇ ′ ⋅ F ( r ′ ) | r − r ′ | d V ′ + ∫ V ∇ ′ ⋅ F ( r ′ ) | r − r ′ | d V ′ ) − ∇ × ( ∫ V ∇ ′ × F ( r ′ ) | r − r ′ | d V ′ − ∫ V ∇ ′ × F ( r ′ ) | r − r ′ | d V ′ ) ] {\displaystyle \mathbf {F} \left(\mathbf {r} \right)=-{\frac {1}{4\pi }}\left[-{\boldsymbol {\nabla }}\left(-\int _{V}{\frac {{\boldsymbol {\nabla }}'\cdot \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'+\int _{V}{\boldsymbol {\nabla }}'\cdot {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)-{\boldsymbol {\nabla }}\times \left(\int _{V}{\frac {{\boldsymbol {\nabla }}'\times \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-\int _{V}{\boldsymbol {\nabla }}'\times {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'\right)\right]} 。 利用散度定理,方程式可改寫成 F ( r ) = − 1 4 π [ − ∇ ( − ∫ V ∇ ′ ⋅ F ( r ′ ) | r − r ′ | d V ′ + ∮ S n ^ ′ ⋅ F ( r ′ ) | r − r ′ | d S ′ ) − ∇ × ( ∫ V ∇ ′ × F ( r ′ ) | r − r ′ | d V ′ − ∮ S n ^ ′ × F ( r ′ ) | r − r ′ | d S ′ ) ] {\displaystyle \mathbf {F} \left(\mathbf {r} \right)=-{\frac {1}{4\pi }}\left[-{\boldsymbol {\nabla }}\left(-\int _{V}{\frac {{\boldsymbol {\nabla }}'\cdot \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'+\oint _{S}\mathbf {\hat {n}} '\cdot {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'\right)-{\boldsymbol {\nabla }}\times \left(\int _{V}{\frac {{\boldsymbol {\nabla }}'\times \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-\oint _{S}\mathbf {\hat {n}} '\times {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'\right)\right]} = − ∇ [ 1 4 π ∫ V ∇ ′ ⋅ F ( r ′ ) | r − r ′ | d V ′ − 1 4 π ∮ S n ^ ′ ⋅ F ( r ′ ) | r − r ′ | d S ′ ] + ∇ × [ 1 4 π ∫ V ∇ ′ × F ( r ′ ) | r − r ′ | d V ′ − 1 4 π ∮ S n ^ ′ × F ( r ′ ) | r − r ′ | d S ′ ] {\displaystyle =-{\boldsymbol {\nabla }}\left[{\frac {1}{4\pi }}\int _{V}{\frac {{\boldsymbol {\nabla }}'\cdot \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-{\frac {1}{4\pi }}\oint _{S}\mathbf {\hat {n}} '\cdot {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'\right]+{\boldsymbol {\nabla }}\times \left[{\frac {1}{4\pi }}\int _{V}{\frac {{\boldsymbol {\nabla }}'\times \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-{\frac {1}{4\pi }}\oint _{S}\mathbf {\hat {n}} '\times {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'\right]} 。 定義 Φ ( r ) ≡ 1 4 π ∫ V ∇ ′ ⋅ F ( r ′ ) | r − r ′ | d V ′ − 1 4 π ∮ S n ^ ′ ⋅ F ( r ′ ) | r − r ′ | d S ′ {\displaystyle \Phi \left(\mathbf {r} \right)\equiv {\frac {1}{4\pi }}\int _{V}{\frac {{\boldsymbol {\nabla }}'\cdot \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-{\frac {1}{4\pi }}\oint _{S}\mathbf {\hat {n}} '\cdot {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'} A ( r ) ≡ 1 4 π ∫ V ∇ ′ × F ( r ′ ) | r − r ′ | d V ′ − 1 4 π ∮ S n ^ ′ × F ( r ′ ) | r − r ′ | d S ′ {\displaystyle \mathbf {A} \left(\mathbf {r} \right)\equiv {\frac {1}{4\pi }}\int _{V}{\frac {{\boldsymbol {\nabla }}'\times \mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} V'-{\frac {1}{4\pi }}\oint _{S}\mathbf {\hat {n}} '\times {\frac {\mathbf {F} \left(\mathbf {r} '\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}\mathrm {d} S'} 所以 F = − ∇ Φ + ∇ × A {\displaystyle \mathbf {F} =-{\boldsymbol {\nabla }}\Phi +{\boldsymbol {\nabla }}\times \mathbf {A} } 利用傅利葉轉換做推導 (疑似有錯誤) 將F改寫成傅利葉轉換的形式: F → ( r → ) = ∭ G → ( ω → ) e i ω → ⋅ r → d ω → {\displaystyle {\vec {\mathbf {F} }}({\vec {r}})=\iiint {\vec {\mathbf {G} }}({\vec {\omega }})e^{\displaystyle i\,{\vec {\omega }}\cdot {\vec {r}}}d{\vec {\omega }}} 純量場的傅利葉轉換是一個純量場,向量場的傅利葉轉換是一個維度相同的向量場。 現在考慮以下純量場及向量場: G Φ ( ω → ) = i G → ( ω → ) ⋅ ω → | | ω → | | 2 G → A ( ω → ) = i ω → × ( G → ( ω → ) + i G Φ ( ω → ) ω → ) Φ ( r → ) = ∭ G Φ ( ω → ) e i ω → ⋅ r → d ω → A → ( r → ) = ∭ G → A ( ω → ) e i ω → ⋅ r → d ω → {\displaystyle {\begin{array}{lll}G_{\Phi }({\vec {\omega }})=i\,{\frac {\displaystyle {\vec {\mathbf {G} }}({\vec {\omega }})\cdot {\vec {\omega }}}{||{\vec {\omega }}||^{2}}}&\quad \quad &{\vec {\mathbf {G} }}_{\mathbf {A} }({\vec {\omega }})=i\,{\vec {\omega }}\times \left({\vec {\mathbf {G} }}({\vec {\omega }})+iG_{\Phi }({\vec {\omega }})\,{\vec {\omega }}\right)\\&&\\\Phi ({\vec {r}})=\displaystyle \iiint G_{\Phi }({\vec {\omega }})e^{\displaystyle i\,{\vec {\omega }}\cdot {\vec {r}}}d{\vec {\omega }}&&{\vec {\mathbf {A} }}({\vec {r}})=\displaystyle \iiint {\vec {\mathbf {G} }}_{\mathbf {A} }({\vec {\omega }})e^{\displaystyle i\,{\vec {\omega }}\cdot {\vec {r}}}d{\vec {\omega }}\end{array}}} 所以 G → ( ω → ) = − i ω → G Φ ( ω → ) + i ω → × G → A ( ω → ) {\displaystyle {\vec {\mathbf {G} }}({\vec {\omega }})=-i\,{\vec {\omega }}\,G_{\Phi }({\vec {\omega }})+i\,{\vec {\omega }}\times {\vec {\mathbf {G} }}_{\mathbf {A} }({\vec {\omega }})} F → ( r → ) = − ∭ i ω → G Φ ( ω → ) e i ω → ⋅ r → d ω → + ∭ i ω → × G → A ( ω → ) e i ω → ⋅ r → d ω → = − ∇ Φ ( r → ) + ∇ × A → ( r → ) {\displaystyle {\begin{array}{lll}{\vec {\mathbf {F} }}({\vec {r}})&=&\displaystyle -\iiint i\,{\vec {\omega }}\,G_{\Phi }({\vec {\omega }})\,e^{\displaystyle i\,{\vec {\omega }}\cdot {\vec {r}}}d{\vec {\omega }}+\iiint i\,{\vec {\omega }}\times {\vec {\mathbf {G} }}_{\mathbf {A} }({\vec {\omega }})e^{\displaystyle i\,{\vec {\omega }}\cdot {\vec {r}}}d{\vec {\omega }}\\&=&-{\boldsymbol {\nabla }}\Phi ({\vec {r}})+{\boldsymbol {\nabla }}\times {\vec {\mathbf {A} }}({\vec {r}})\end{array}}} 注釋Loading content...參考文獻Loading content...Loading content...Loading content...外部連結Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.