Remove ads
来自维基百科,自由的百科全书
在數學中,非線性規劃是求解由一系列未知實函數組成的組方程式和不等式(統稱為約束)定義的最佳化問題,伴隨著一個要被最大化或最小化的目標函數,只是一些約束或目標函數是非線性的。[1]它是最佳化處理非線性問題的一個子領域。
從一系列運輸方法中選擇最佳化運輸成本的一個或多個表現規模經濟的連通性和容量約束不同的非凸問題。例如從管道、鐵路油槽車、罐車、河駁船或沿海油船中選擇或組合的石油產品運輸。由於經濟批量大小,除了平滑變化之外,成本函數可以有不連續性。
現代工程實踐涉及到大量的數值最佳化。除了在很少一部分重要情形(如無源電路)中,工程問題是非線性的,它們通常是非常複雜。
在實驗科學中,一些簡單的數據分析(如已知位置和形狀但未知幅度的峰的總和的光譜的擬合)可以用線性方法來完成,但一般來說這些問題也是非線性的。通常研究的是含有變量參數的系統的理論模型以及含有未知參數的試驗模型。可以試著用數值尋找最優值。這種情況下,除了最優值本身通常還需要對結果的精度進行量度。
令 n、m、p為正整數。令 X 為 Rn 的一個子集,令 f、gi 和 hj 為 X 的實值函數,對每個 i 屬於 {1, …, m} 及每個 j 屬於 {1, …, p}。
非線性最小化問題等效為下面形式的最佳化問題
非線性最大化問題定義方式類似。
約束集的性質有若干可能性,也被稱為可行集或可行域。
無解問題(infeasible problem)是指沒有一組變數可以滿足所有的約束,也就是約束之間有互相矛盾的情形,沒有解存在。
有解問題(feasible problem)是指至少有一組變數可以滿足所有的約束條件。
無界限問題(unbounded problem)是一個有解問題,其變數沒有上限限制,因此沒有最佳解,因為總會有一組變數使得目標函數比其他組的變數有更好的結果。
可以用下列約束來定義一個簡單問題
需要最大化的目標函數為
用下面這些約束就可以定義另一個簡單的問題
需要最大化的目標函數為
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.