酸鹼理論指闡述及酸鹼反應本質的各種理論。在歷史上曾有多種酸鹼理論,其中重要的包括:

酸和鹼的定義

歷史性的突破

酸鹼反應的概念最早由紀堯姆-弗朗索瓦·魯埃勒於 1754 年提出,他將「」一詞引入化學中,表示與反應生成固體形式(作為鹽)的物質。 鹼本質上大多是苦的[1]

拉瓦節的定義(酸中需含有氧元素)

酸和鹼的第一個科學概念是由拉瓦節在1776年左右提出的。

拉瓦節認為是酸中不可或缺的組分,將氧定義為酸生成者(οξυς γεινομαι),並且認為當時還未研究清楚成分的氫鹵酸中也含有氧元素。 這是因為拉瓦節對強酸的知識僅限於含氧酸,例如硝酸(HNO3)和硫酸(H2SO4),這些酸有一個中心原子,中心原子具有高氧化態,且被氧原子包圍。並且當時的科學界也不清楚氫鹵酸(HF、HCl、HBr 和 HI)的準確組成。

拉瓦節的定義持續了 30 多年,直到漢弗萊·戴維於 1810 年發表文章和隨後的講座,證明硫化氫 ()、碲化氫 () 和氫鹵酸中不含氧。 然而,戴維未能發展出新的理論,他得出的結論是「酸度並不取決於任何特定的元素,而是取決於不同元素的特殊排列」[2]

永斯·貝采利烏斯拉瓦節的氧理論進行了一項值得注意的修改,他指出酸是非金屬的氧化物,而鹼是金屬的氧化物。

李比希的定義(酸中需含有氫元素)

1838年,尤斯圖斯·馮·李比希提出酸是一種含化合物,酸中的氫元素可被金屬取代[3][4][5]。這一重新定義基於他對有機酸化學成分的廣泛研究,完成了戴維發起的從氧基酸氫基酸的學說轉變。 李比希的定義雖然完全是經驗性的,但在阿瑞尼士定義被採用之前一直沿用了近 50 年[6]

阿瑞尼士的定義

Thumb
現在阿瑞尼士酸鹼理論仍然被廣泛用於理解酸鹼反應的概念。[7]

該理論以阿瑞尼士威廉·奧斯特瓦爾德在1884年左右的研究為基礎,相比其他酸鹼理論更加簡明易懂。阿瑞尼士本人也因此獲得1903年的諾貝爾化學獎

至於該理論中的酸鹼定義,可用以下句子來描述:

也就是說,阿瑞尼士酸被加入水後,必須直接或間接引起:

  • 水合氫離子濃度增加,或
  • 氫氧根離子濃度降低

而阿瑞尼士鹼被加入水後,必須直接或間接引起:

  • 水合氫離子濃度降低,或
  • 氫氧根離子濃度增加

酸鹼反應的本質是氫離子與氫氧根離子反應生成水。

2 H2O → OH + H3O+[8]

因此在該理論下,酸鹼反應生成鹽和水的過程也被稱作中和反應[7]

+ + 鹼 → 鹽 + 水

鹼中的陽離子可與酸中的陰離子成鹽。比如,兩莫耳氫氧化鈉(NaOH)與一莫耳的硫酸(H2SO4)反應,產物是兩莫耳水和一莫耳硫酸鈉

2NaOH + H2SO4 → 2 H2O + Na2SO4

布侖斯惕(Brønsted)及勞里(Lowry)酸鹼學說

丹麥化學家約翰內斯·尼古勞斯·布侖斯惕和英國化學家托馬斯·馬丁·勞里於1923年分別提出酸鹼質子理論,也稱為布朗斯特-勞瑞酸鹼理論。該理論認為,凡是能給出質子(H+)的物質都是酸,凡能接受質子的物質都是鹼,而既能給出質子,也能接受質子的物質稱為兩性物質[7][9][10] 酸和鹼不是孤立的,它們通過質子互相聯繫,用通式可以表示為:

酸 → 鹼 + 質子

這樣的一對酸鹼稱為共軛酸鹼對,其中的酸和鹼分別稱為相應物質的共軛酸及共軛鹼。[7][10]

與阿瑞尼士酸鹼理論不同的是,布侖斯惕酸鹼不僅限於電中性的分子,也包括帶電的陰陽離子。而該理論之下的酸鹼反應則是兩對共軛酸鹼對之間傳遞質子的反應,不一定生成鹽和水:

1 + 鹼2 → 鹼1 + 酸2
AH + B → A + BH+

水是兩性的——也就是說,它既可以作為酸也可以作為鹼。布侖斯惕酸鹼模型解釋了這一點,顯示了水分解成低濃度的水合氫離子和氫氧根離子:

H2O + H2O ⇌ H3O+ + OH

以下是水分別作為酸和鹼參與反應的例子:

HCl (aq) + H2O → H3O+ (aq) + Cl (aq)
C5H5N + H2O ⇌ [C5H5NH]+ + OH

布侖斯惕酸鹼在形式上獨立於任何溶劑,例如,考慮當乙酸 CH3COOH 溶解在液氨中時會發生什麼:

CH3COOH + NH3 → NH4+ + CH3COO

路易斯的定義

路易斯酸鹼理論由吉爾伯特·牛頓·路易斯在1923年提出,[11] 結合了布朗斯特-勞里和酸鹼溶劑理論的特點,在水溶液和非水溶劑中都有很廣的應用。[12] 該理論著重探討電子的給予與獲得,[12]路易斯酸被定義為電子接受體,而路易斯鹼則是電子給予體。

Ag+ (酸) + 2 :NH3 (鹼) → [H3N:Ag:NH3]+ (酸鹼加合物)

路易斯酸與路易斯鹼反應時,路易斯鹼含有孤對電子的最高占有軌域(HOMO)向路易斯酸缺電子的最低未占軌域(LUMO)貢獻電子生成配位鍵,產物稱作酸鹼加合物[12] 在強極性分子如三氟化硼中,[12]電負度強的元素吸引電子,帶有部分負電荷,電負度弱的元素則帶有部分正電荷,孤對-成鍵電子(Lp-Bp)之間作用力超過成鍵-成鍵電子(Bp-Bp)之間的作用力。[12] 金屬離子的加合物被稱為配位化合物[12]

路易斯酸鹼的定義與布侖斯惕酸鹼具有一致性,比如下面的反應在兩種理論中都是酸鹼反應:

H+ + OH ⇌ H2O

溶劑理論

該理論與阿瑞尼士對所有自偶解離溶劑的定義有關。在這些溶劑中,存在中性溶劑分子與解離出的陽離子和陰離子之間的平衡:

2H2O H3O+ (水合氫離子) + OH (氫氧根)
2NH3 NH4+ () + NH2 (胺基負離子)

非質子溶劑:

N2O4 NO+ (亞硝基正離子) + NO3 (硝酸根)
2SbCl3 SbCl2+ + SbCl4

酸導致溶劑陽離子濃度上升,陰離子濃度下降;而鹼則導致陽離子濃度下降,陰離子濃度上升。例如在液中,KNH2提供NH2離子,是強鹼,而NH4NO3提供NH4+離子,是強酸。在液態二氧化硫(SO2)中,亞硫醯基化合物是酸,提供SO2+離子;而亞硫酸鹽提供SO32−離子,可看作鹼。

該理論下,液氨中的酸鹼反應包括:

2NaNH2 (鹼) + Zn(NH2)2 (兩性) → Na2[Zn(NH2)4]
2NH4I (酸) + Zn(NH2)2 (兩性) → [Zn(NH3)4)]I2

硝酸在純硫酸中是鹼:

HNO3 (鹼) + 2H2SO4 → NO2+ + H3O+ + 2HSO4

液態四氧化二氮中:

AgNO3 (鹼) + NOCl (酸) → N2O4 + AgCl

酸鹼溶劑理論中,同一化合物在不同溶劑中可以改變其酸鹼性質,比如HClO4在水中是強酸,在乙酸中是弱酸,而在氟磺酸中則是弱鹼。

其他酸鹼理論

Usanovich的定義

關於酸鹼最基本的定義來自於俄羅斯化學家Mikhail Usanovich。根據該定義,只要是可以接受負電荷或放出正電荷,就是酸;反之則是鹼。由於在該定義下氧化還原反應是酸鹼反應的特殊情況,化學家並不是很傾向於使用這個定義。這是因為氧化還原主要集中討論物理上的電子轉移過程,而並非是鍵的形成與斷裂過程,要將兩者完全區分是不可能的。

Usanovich定義的例子如下:

Na
2
O
(鹼) + SO
3
(酸) → 2 Na+
+ SO2−
4
(交換的物種:O2−
陰離子)
3 (NH
4
)
2
S
(鹼) + Sb
2
S
5
(酸) → 6 NH+
4
+ 2 SbS3−
4
(交換的物種:3 S2−
陰離子)
2Na (鹼) + Cl
2
(酸) → 2Na+
+ 2Cl
(交換的物種:2 電子)

Lux-Flood的定義

這個定義由德國化學家Hermann Lux英語Hermann Lux[13][14] 在1939年時所提出,其後Håkon Flood英語Håkon Flood約在1947年作進一步的修正,[15] 現在主要用於現代熔鹽的地球化學電化學研究中。在該定義中,酸被定義為一個氧離子受體,而鹼則是一個氧離子供體。例如:

MgO (鹼) + CO2 (酸) → MgCO3
CaO (鹼) + SiO2 (酸) → CaSiO3
NO3 (鹼) + S2O72− (酸) → NO2+ + 2SO42−[16]

皮爾遜的定義

1963年,[17] 拉斐爾·皮爾遜提出了一個高級的定性概念——軟硬酸鹼理論。1984年,在Robert Parr的協助下,該理論發展成為一個定量的理論。「硬」對應的是小的、高氧化態的粒子,這些粒子都很難被極化。相反,「軟」是指大的,低氧化態的粒子,很容易被極化。軟-軟和硬-硬之間的酸鹼反應最為穩定。這個理論在有機化學和無機化學均有應用。

參見

注釋

參考資料

外部連結

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.