热门问题
时间线
聊天
视角
經典力學方程列表
維基媒體列表條目 来自维基百科,自由的百科全书
Remove ads
經典力學是物理學描述宏觀物體運動的分支。[1]是最熟悉的物理學理論。涵蓋如常用和已知的加速度和力。[2]本列表基於具固定軸的三維歐幾里得空間參考系。三軸的交點稱為此空間的原點。[3]
經典力學
Remove ads

Remove ads

左: 固有的自旋角動量S是物體每一點的軌道角動量
右: 對應一個軸的外在軌道角動量L
上:轉動慣量 I以及角速度ω(L不一定會和ω平行)[6]
下:動量p以及其相對於軸的位置r
。總角動量(spin + orbital)為J
Remove ads
每一個保守力都有對應的勢能。根據以下二個原理,可以設定勢能U的值:
- 保守力為零的時候,勢能也定義為零。
- 保守力作功時,勢能減少。
Remove ads
Remove ads
運動學
在以下轉動的定義中,角度是對應轉動軸的位意角度。一般常用θ,不過不一定要是極座標下的極角。單位軸向量
定義轉動軸為r方向上的單位向量,是和角呈切線的單位向量。
Remove ads
動力學
Remove ads
陀螺的進動角速度為:
其中w是自旋物體的重量。
能量
系統以外事物對系統所作的機械功等於系統的動能變化:
系統以外事物,對曲線路徑C上的質點產生力F(在 r的位置)以及力矩τ,所做成的功W為:
其中θ是相對單位向量n所定義軸的轉動角度。
Remove ads
物體一開始的速度為,後來的速度為,其動能變化為:
其中r2和r1是彈簧未固定端,在拉長後以及拉長前的共線座標,方向是往拉長/壓縮的方向,k是彈簧常數。
剛體運動的歐拉方程
萊昂哈德·歐拉也像牛頓一様,發表了運動定律,可以參見歐拉運動定律。這些定律將牛頓運動定律擴展到剛體的運動上,不過本質是相同的。以下是歐拉提出新的運動方程式[7]:
通用平面運動
前面平面運動的方程可以用在此處,應用上述的定義即可推出動量、角動量等。針對在平面上路徑移動的物體。
以下的結果可應用在質點上。
針對質量較大的物體,而且因為其他物體所施加的連心力而運動,連心力只和二物體質心的距離有關,其運動方程為:
定加速度運動方程
僅當加速度恆定時才能使用這些方程式。如果加速度會變化,則必須使用上面的一般微積分學方程,透過積分位置、速度和加速度的定義來找到(見上文) 。
伽利略座標系變換
在古典(伽利略-牛頓)力學裡,將物理定律從一個慣性或加速(包括旋轉)坐標系(參考坐標系是以定速移動,其中包括零速)變換到另一個坐標系的變換即為伽利略變換。
以下標示r, v, a 的物理量是在坐標系F的位置、速度、加速度物理量,而標示r』, v』, a』 的物理量是在以相對坐標系F移動速度V或是角速度Ω的坐標系F』的的位置、速度、加速度物理量。相對的,F是以相反的速度(—V or —Ω) 相對於F'移動。此情形類似相對加速度。
機械諧振子
相關條目
參考資料
參考書目
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads