經典力學是物理學描述宏觀物體運動的分支。[1]是最熟悉的物理學理論。涵蓋如常用和已知的加速度和力。[2]本列表基於具固定軸的三維歐幾里得空間參考系。三軸的交點稱為此空間的原點。[3]
經典力學概念包括微分方程、流形、李群和遍歷理論。各種物理量相互關聯[4]。本列表總結了其中最重要的內容。
本文列出了牛頓力學的方程,有關經典力學(包括拉格朗日力學和哈密頓力學)的更一般公式,請參閱分析力學。
每一個保守力都有對應的勢能。根據以下二個原理,可以設定勢能U的值:
- 保守力為零的時候,勢能也定義為零。
- 保守力作功時,勢能減少。
在以下轉動的定義中,角度是對應轉動軸的位意角度。一般常用θ,不過不一定要是極座標下的極角。單位軸向量
定義轉動軸為r方向上的單位向量,是和角呈切線的單位向量。
更多資訊 平移, 轉動 ...
|
平移
|
轉動
|
速度
|
平均:
瞬時:
|
角速度轉動剛體:
|
加速度
|
平均:
瞬時:
|
角加速度
轉動剛體:
|
加加速度
|
平均:
瞬時:
|
角加加速度
轉動剛體:
|
關閉
陀螺的進動角速度為:
其中w是自旋物體的重量。
系統以外事物對系統所作的機械功等於系統的動能變化:
系統以外事物,對曲線路徑C上的質點產生力F(在 r的位置)以及力矩τ,所做成的功W為:
其中θ是相對單位向量n所定義軸的轉動角度。
遵守胡克定律的彈簧,若一端固定,拉長後,其彈性勢能為
其中r2和r1是彈簧未固定端,在拉長後以及拉長前的共線座標,方向是往拉長/壓縮的方向,k是彈簧常數。
萊昂哈德·歐拉也像牛頓一様,發表了運動定律,可以參見歐拉運動定律。這些定律將牛頓運動定律擴展到剛體的運動上,不過本質是相同的。以下是歐拉提出新的運動方程式[10]:
其中I是轉動慣量張量.
前面平面運動的方程可以用在此處,應用上述的定義即可推出動量、角動量等。針對在平面上路徑移動的物體。
以下的結果可應用在質點上。
更多資訊 運動學, 動力學 ...
運動學
|
動力學
|
位置
|
|
速度
|
動量
角動量
|
加速度
|
向心力為
其中的m是質量矩(mass moment),科里奧利力為
科里奧利加速度以及科里奧利也可以寫成:
|
關閉
針對質量較大的物體,而且因為其他物體所施加的連心力而運動,連心力只和二物體質心的距離有關,其運動方程為:
僅當加速度恆定時才能使用這些方程式。如果加速度會變化,則必須使用上面的一般微積分學方程,透過積分位置、速度和加速度的定義來找到(見上文) 。
在古典(伽利略-牛頓)力學裡,將物理定律從一個慣性或加速(包括旋轉)坐標系(參考坐標系是以定速移動,其中包括零速)變換到另一個坐標系的變換即為伽利略變換。
以下標示r, v, a 的物理量是在坐標系F的位置、速度、加速度物理量,而標示r』, v』, a』 的物理量是在以相對坐標系F移動速度V或是角速度Ω的坐標系F』的的位置、速度、加速度物理量。相對的,F是以相反的速度(—V or —Ω) 相對於F'移動。此情形類似相對加速度。
更多資訊 運動方式, 慣性坐標系 ...
運動方式
|
慣性坐標系
|
加速坐標系
|
移動
V = 兩個慣性坐標系F和F'之間的相對定速度
A = 兩個加速坐標系F和F'之間的相對(變)加速度
|
相對位置
相對速度
等效加速度
|
相對加速度
假想力
|
轉動
Ω = 兩個慣性坐標系F和F'之間的相對定角速度
Λ = 兩個加速坐標系F和F'之間的相對(變)角加速度
|
相對角位置
相對速度
等效加速度
|
相對加速度
假想力矩
|
將向量T轉換到旋轉座標系
|
關閉