Loading AI tools
来自维基百科,自由的百科全书
在機率論中,穩定分布(Stable distribution,又稱為雷維偏阿爾法-穩定分布(Levy skew alpha-stable distribution))是一種連續機率分布,它是由保羅·皮埃爾·萊維發展起來的。在穩定分布中,獨立同分布的隨機變數之和及它們本身具有相同的分布。
更明確的說,如果為分布之獨立隨機變數,令為的線性組合,若之分布滿足,則稱為穩定分布。如果對於所有的、和,,則稱為嚴格穩定。
穩定分布被用作金融數據的分析。比如本華·曼德博發現棉花價格的變化服從穩定分布()。
一個穩定分布可以用尺度、特性指數、移位和偏度母數來表示。
偏度母數必須位於區間[−1, 1]內。當它為零時,分布呈對稱,可以稱為雷維阿爾法對稱穩定分布。指數必須位於區間(0, 2]內。
其中可以表示為:
其中sgn(t) 是t 的符號, 表示為:
當時
是移位母數,衡量對稱性。當=0時,表示分布關於對稱。是尺度因素,它衡量分布的寬度。是分布指數,表示當時分布的漸進行為。
當 時的漸進行為可以表示為:
其中Γ是伽馬函數(除了當α<1和β=1或-1時,尾部向著左邊或者右邊消失)。這種「重尾」行為造成穩定分布的變異數在 時無限大。
的形式沒有統一的方案,但是卻存在三個特例:
以上三個分布其實是相互關聯的。一個標準的柯西隨機變數可以被看成是高斯隨機變數(所有均值為零)和一個標準雷維分布的變異數的混合。
穩定分布擁有穩定性質,如果把個阿爾法穩定變量從以下分布中提出:
那麼
也像阿爾法穩定變量那樣分布
其中:
這用特性函數的性質可以很容易證明。
另外一個關於穩定分布的重要的性質是它們在中央極限定理中扮演的角色。中央極限定理闡明了隨著有限變異數的隨機變數數量增長,它們的和的分布趨向常態分布。一個推廣的理論指出隨著服從以遞減的冪律尾分布(因此具有無限變異數)的隨機變數數量增長,它們的和的分布趨向穩定分布 。
穩定分布可以用更簡單的積分來表示:
把第二部分用泰勒級數表示,我們有:
其中
把積分和求和的順序對調,然後進行積分,式子變成:
(在的情況下成立)
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.