正切(Tangent,,東歐國家將其寫作tg)是三角函數的一種。它的值域是整個實數集,定義域落在()。它是周期函數,其最小正周期為(180°)。正切函數是奇函數。
正切 |
|
性質 |
奇偶性 | 奇 |
定義域 | |
到達域 | (-∞,∞) |
周期 | (180°) |
特定值 |
當x=0 | 0 |
當x=+∞ | N/A |
當x=-∞ | N/A |
最大值 | ∞ |
最小值 | -∞ |
其他性質 |
漸近線 | (x=180°k+90°) |
根 | (180°k) |
不動點 | 當x軸為弧度時: 0 ±4.4934094579091... (±257.453397562356...°) ±7.7252518369378... (±442.6243259322...°) ±10.9041216594289... (±624.7601503824636...°) ...
當x軸為角度時: 0 ±89.35883916555255...° ±269.78762733604602...° ±449.8726402096397...° ... |
k是一個整數。 |
正切的符號為,源於英文tangent。該符號最早由數學家湯瑪斯·芬克(Thomas Fincke)所採用。
在直角三角形中,一個銳角的正切定義為它的對邊與鄰邊的比值,也就是:
可以發現其定義和餘切函數互為倒數。
正切函數也可以使用泰勒展開式定義
其中為伯努利數。
另外,我們也有
設,對於。設是變量,,的次基本對稱多項式。則
項的數目依賴於。例如,
並以此類推。一般情況可通過數學歸納法證明。
當一物體在斜面上剛開始滑動時,其靜摩擦係數為斜面傾角的正切值。