Remove ads
来自维基百科,自由的百科全书
在集合論中,鄰域(英語:Neighbourhood)指以點 a 為中心的任何開區間,記作:U(a)。
在拓撲學和相關的數學領域中,鄰域是拓撲空間中的基本概念。直覺上說,一個點的鄰域是包含這個點的集合,並且該性質是外延的:你可以稍微「抖動」一下這個點而不離開這個集合。
在集合論中,有以下幾種鄰域:
在拓撲學中,拓撲空間X,A,B⊆X,稱B是A的鄰域,若且唯若以下條件之一成立:
注意:某些作者要求鄰域是開集,所以在閱讀文獻時注意約定是很重要的。
如果S是X的子集,S的鄰域是集合V,它包含了包含S的開集U。可得出集合V是S的鄰域,若且唯若它是在S中的所有點的鄰域。
在度量空間M = (X,d)中,集合V是點p的鄰域,如果存在以p為中心和半徑為r的開球,
它被包含在V中。
V叫做集合S的均勻鄰域(uniform neighborhood),如果存在正數r使得對於S的所有元素p,
被包含在V中。
對於r>0集合S的r-鄰域是X中與S的距離小於r的所有點的集合(或等價的說是以S中一個點為中心半徑為r的所有開球的聯集)。
可直接得出r-鄰域是均勻鄰域,並且一個集合是均勻鄰域若且唯若它包含對某個r值的r-鄰域。
參見一致空間。
則V是自然數集合N的鄰域,但它不是這個集合的均勻鄰域,因為並不是一個固定值。
點 的去心鄰域(英語:deleted neighborhood 或 punctured neighborhood)是點 的鄰域中減去 後得到的差集。例如,區間 是 在實數軸上的鄰域,因此集合 是 的一個去心鄰域。需注意的是,給定點的去心鄰域實際上不是該點的鄰域。在討論函數極限時,會用到去心鄰域的概念。
上述定義適用於開集的概念早已定義的情況。有另一種方式來定義拓撲,也就是先定義鄰域系統,再定義開集:若集中每個點皆有一個鄰域被包含於集中,則為開集。
在X上的鄰域系統是濾子N(x)(在集合X上)到每個X中的x的指派,使得
可以證明這兩個定義是兼容的,就是說從使用開集定義的鄰域系統獲得的拓撲就是最初的拓撲,反之從鄰域系統出發亦然。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.