Loading AI tools
来自维基百科,自由的百科全书
內射模(英語:injective module),在模論中,是具有與有理數 (視為 -模)相似性質的模。內射模是投射模的對偶概念,由Reinhold Baer於1940年引進。
一個環 上的左模 若滿足以下等價條件,則稱之為內射模:
右模的定義類此。抽象地說,內射模乃是模範疇中的內射對象。
內射模的直積(包括無窮直積)仍是內射模,內射模的有限直和仍為內射模。一般而言,內射模的子模、商模或無窮直和並不一定是內射模。
Baer 在其論文中證明了一個有用的結果,通常稱作 Baer 判準:一個左 -模 是內射模若且唯若定義在任一理想 上的態射 都能延拓到整個 上。
利用此判準,可證明主理想域 上的模 是內射模若且唯若 可除,即:對任何 ,存在 使得 ,由此可證 是內射 -模,向量空間都是內射模。
最重要的內射模當屬 :它是 -模範疇中的內射上生成元,換言之,這是內射模,而且任何 -模皆可嵌入某個 中,其中 是夠大的基數。由此可知任何 -模皆可嵌入某個內射 -模。此性質對任意環 上的左模都成立,要點在於利用 的特性構造左 -模範疇中的內射上生成元。
我們也可以定義模的內射包(基本上是包含一個模的最小內射模)。任意模 都有內射分解,這是形式如下的正合序列:
其中每個 都是內射的。內射分解可以用以定義模的內射維度(基本上是內射分解的最短長度,可能是無限的)及導函子。
不可分解內射模的自同態環是局部環。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.