Remove ads
2 的非負整數次方形成之數列 来自维基百科,自由的百科全书
2的冪是指符合型式,而也是整數的數,也就是底數為2,指數為整數 n的冪。
在有些情形下,會將限制在正整數及零的範圍內[1],因此2的冪包括1、2以及2自乘多次的乘積[2]。
因為2是二進制的底數,因此在常出現二進制的電腦科學中,2的冪也很常見。若將2的冪用二進制表示,會是100…000、0.00…001或是1的形式,類似用十進制表示10的冪的情形。
2 ^ n
2 ** n
power(2, n)
20 | = | 1 | 216 | = | 65,536 | 232 | = | 4,294,967,296 | 248 | = | 281,474,976,710,656 | |||
21 | = | 2 | 217 | = | 131,072 | 233 | = | 8,589,934,592 | 249 | = | 562,949,953,421,312 | |||
22 | = | 4 | 218 | = | 262,144 | 234 | = | 17,179,869,184 | 250 | = | 1,125,899,906,842,624 | |||
23 | = | 8 | 219 | = | 524,288 | 235 | = | 34,359,738,368 | 251 | = | 2,251,799,813,685,248 | |||
24 | = | 16 | 220 | = | 1,048,576 | 236 | = | 68,719,476,736 | 252 | = | 4,503,599,627,370,496 | |||
25 | = | 32 | 221 | = | 2,097,152 | 237 | = | 137,438,953,472 | 253 | = | 9,007,199,254,740,992 | |||
26 | = | 64 | 222 | = | 4,194,304 | 238 | = | 274,877,906,944 | 254 | = | 18,014,398,509,481,984 | |||
27 | = | 128 | 223 | = | 8,388,608 | 239 | = | 549,755,813,888 | 255 | = | 36,028,797,018,963,968 | |||
28 | = | 256 | 224 | = | 16,777,216 | 240 | = | 1,099,511,627,776 | 256 | = | 72,057,594,037,927,936 | |||
29 | = | 512 | 225 | = | 33,554,432 | 241 | = | 2,199,023,255,552 | 257 | = | 144,115,188,075,855,872 | |||
210 | = | 1,024 | 226 | = | 67,108,864 | 242 | = | 4,398,046,511,104 | 258 | = | 288,230,376,151,711,744 | |||
211 | = | 2,048 | 227 | = | 134,217,728 | 243 | = | 8,796,093,022,208 | 259 | = | 576,460,752,303,423,488 | |||
212 | = | 4,096 | 228 | = | 268,435,456 | 244 | = | 17,592,186,044,416 | 260 | = | 1,152,921,504,606,846,976 | |||
213 | = | 8,192 | 229 | = | 536,870,912 | 245 | = | 35,184,372,088,832 | 261 | = | 2,305,843,009,213,693,952 | |||
214 | = | 16,384 | 230 | = | 1,073,741,824 | 246 | = | 70,368,744,177,664 | 262 | = | 4,611,686,018,427,387,904 | |||
215 | = | 32,768 | 231 | = | 2,147,483,648 | 247 | = | 140,737,488,355,328 | 263 | = | 9,223,372,036,854,775,808 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.