F檢定
假說檢定的一種 来自维基百科,自由的百科全书
F檢定 (F-test),亦稱聯合假說檢定(joint hypotheses test)、變異數比率檢定、變異數同質性檢定。它是一種在虛無假說(null hypothesis, H0)之下,統計值服從F-分布的檢定。其通常是用來分析用了超過一個母數的統計模型,以判斷該模型中的全部或一部分母數是否適合用來估計母體。
F檢定這名稱是由美國數學家兼統計學家George W. Snedecor命名,為了紀念英國統計學家兼生物學家羅納德·費雪(Ronald Aylmer Fisher)。Fisher在1920年代發明了這個檢定和F-分布,最初稱為變異數比率(Variance Ratio)[1]。
適用場合
注意事項
F檢定對於數據的非常態性非常敏感,因此在進行變異數同質性(homoscedasticity)檢定時,Levene檢定, Bartlett檢定或者Brown–Forsythe檢定的穩健性都要優於F檢定。 F檢定還可以用於三組或者多組之間的均值比較,但是如果被檢定的數據無法滿足均是常態分布的條件時,該數據的穩健型會大打折扣,特別是當顯著水準比較低時。但是,如果數據符合常態分布,而且alpha值至少為0.05,該檢定的穩健型還是相當可靠的。
若兩個母體有相同的變異數(變異數同質性),那麼可以採用F檢定,但是該檢定會呈現極端的非穩健性和非常態性[2][3],可以用t檢定、巴特勒特檢定等取代。
與其它統計值的關係
- F檢定的分子、分母其實各是一個卡方變數除以各自的自由度。[4]
- F檢定用以檢定單一變數可否排除於模型外時,即進行只縮減單一變數之偏F檢定(Partial F test)時,。[5] 可參見 線性迴歸偏迴歸係數β的t檢定。
參見
參考文獻
Wikiwand - on
Seamless Wikipedia browsing. On steroids.