在數學中,雙曲正弦是一種雙曲函數,是雙曲幾何中,與歐幾里得幾何的正弦函數相對應的函數。雙曲正弦可以視為正弦函數的類似物,然而雙曲正弦不具備週期性,且在定義域為實數的情況下,其值域也包括了整個實數域。一般的正弦可以表示為單位圓上特定角構成之弦長的一半,或該角與圓之交點的y座標;而雙曲正弦則代表單位雙曲線上特定雙曲角構成之雙曲弦長的一半,或該雙曲角與單位雙曲線之交點的y座標。雙曲正弦一般以sinh表示[1],在部分較舊的文獻中有時會以表示。[2]
性質 | |
奇偶性 | 奇 |
定義域 | (-∞,∞) |
到達域 | (-∞,∞) |
特定值 | |
當x=0 | 0 |
當x=+∞ | +∞ |
當x=-∞ | -∞ |
最大值 | +∞ |
最小值 | -∞ |
其他性質 | |
漸近線 | N/A |
根 | 0 |
臨界點 | N/A |
拐點 | 0 |
定義
雙曲正弦一般計為[3](有時會簡寫為[4]),其在複變分析中定義為:[5]
其中是複變指數函數。
也就是說,雙曲正弦等同於指數函數與其倒數之差的一半[6]。雙曲正弦也可以視為自然指數函數的奇函數部分[7]
在雙曲幾何中,雙曲正弦函數類似於歐幾里得幾何中的正弦函數。[8]
性質
其與經典的歐拉公式類似。
特殊值
雙曲正弦存在一些特殊值[5]:
其中為黃金比例
參見
參考文獻
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.