Loading AI tools
數學基本概念 来自维基百科,自由的百科全书
機率(中國大陸作概率,香港作機率,舊稱幾率,又稱機會率或或然率),是對隨機事件發生之可能性的度量[1],為數學機率論的基本概念;機率的值是一個在0到1之間的實數,也常以百分數來表示。
「機率」的各地常用名稱 | |
---|---|
中國大陸 | 概率 |
臺灣 | 機率 |
港澳 | 機率 概率 |
日本、韓國漢字 | 確率 |
機率常用來量化對於某些不確定命題的想法[2],命題一般會是以下的形式:「某個特定事件會發生嗎?」,對應的想法則是:「我們可以多確定這個事件會發生?」。確定的程度可以用0到1之間的數值來表示,這個數值就是機率[3]。因此若事件發生的機率越高,表示我們越認為這個事件可能發生。像拋硬幣就是一個簡單的例子,正面朝上及背面朝上的兩種結果看來機率相同,每個的機率都是1/2,也就是正面朝上及背面朝上的機率各有50%。
這些概念可以形成機率論中的數學公理(參考機率公理),在像數學、統計學、金融、賽局理論、科學(特別是物理)、人工智慧/機器學習、電腦科學及哲學等學科中都會用到。機率論也可以描述複雜系統中的內在機制及規律性[4]。
應用到具體問題,「機率」常常被用來視作是對某一事件是否發生(過)的「推測」。這種涵義下,在宏觀世界(非量子力學情況)中,機率來源於資訊的缺失,有效資訊越多,對某一事件發生的把握度(機率)就越大,直至「必然發生」——例如理論上知道拋一枚硬幣時的位置、受力情況,便可以計算出落下時正面還是反面,所知參數越精確,算得機率就能越接近1。但「混沌效果」仍然會制約所得機率的大小。
第一個系統地推算機率的人是16世紀的卡爾達諾[5]。記載在他的著作Liber de Ludo Aleae中。書中關於機率的內容是由Gould從拉丁文翻譯出來的。
Cardano的數學著作中有很多給賭徒的建議。這些建議都寫成短文。例如:《誰,在什麼時候,應該賭博?》、《為什麼亞里斯多德譴責賭博?》、《那些教別人賭博的人是否也擅長賭博呢?》等。
然而,首次提出系統研究機率的是在帕斯卡和費馬來往的一系列信件中。這些通信最初是由帕斯卡提出的,他想找費馬請教幾個關於由Chevalier de Méré提出的問題。Chevalier de Méré是一知名作家,路易十四宮廷的顯要,也是一名狂熱的賭徒。問題主要是兩個:擲骰問題和比賽獎金應分配問題。
在日常生活中,我們常常會遇到一些涉及可能性或發生機會等概念的事件(event)。一個事件的可能性或一個事件的發生機會是與數學有關的。例如:
「從一班40名學生中隨意選出一人,這人是男生嗎?」
事實上,人們問「……可能會發生嗎?」時,他們是在關注這個事件發生的機會。在數學上,事件發生的機會可用一個數來表示。稱該數為機率(Probability)。
我們日常所見所聞的事件大致可分為兩種:
一種是確定性事件。確定性事件包含必然事件和不可能事件。 如太陽從東方升起,或者在標準大氣壓下,水在100℃時會沸騰。我們稱這些事件為必然事件。 如擲一個點數只有1到6的骰子,向上一面的數字是7。我們稱這些事件為不可能事件。
此外,有大量事件在一定條件下是否發生,是無法確定的。如明天的氣溫比今天低、擲一枚硬幣得正面向上,又或者在下一年度的NBA比賽中,芝加哥公牛隊會奪得全年總冠軍。像以上可能發生也可能不會發生的事件稱為隨機事件。
機率論是一種用正式的用語表達機率概念的方式,這些詞語可以用數學及邏輯的規則處理,結果再轉換到和原來問題有關的領域。
至少有兩種成功的將機率公式化的理論,分別是科摩哥洛夫公式化以及考克斯公式化。在科摩哥洛夫公式化(參考機率空間)中,用集合代表事件,機率則是對集合的測度。在考克斯定理中,機率是不能再進一步分析的基元,強調在機率值及命題之間建立一致性的關係。在二種公式化方法中,機率公理都相同,只有一些技術細節不同。
有其他量度不確定性的方式,例如Dempster-Shafer理論或是可能性理論,但兩者都有本質上的不同,無法和一般了解的機率論相容。
機率的概念常常應用在生活中,例如風險評估及以金融市場的交易等。政府也在環境法中應用機率,稱為路徑分析(pathway analysis)。例如中東衝突可能會對油價有某程度的影響,而油價對世界經濟可能會有漣漪效果的影響。某個油品交易商認為中東衝突會使油價上昇或下降,並將他的意見提供給其他交易商。因此機率不是各自獨立的進行評估,評估的過程也不一定合理。行為經濟學就是描述團體迷思對定價、政策甚至和平或衝突的影響[6]。
有關機率評估及組合的嚴謹方式也改變了社會。對大部份的社會大眾而言,重要的是了解機率評估的方式以及機率和決策之間的關係。
機率理論另一個明顯的應用是可靠度理論。像汽車及消費性產品會在產品開發時應用可靠度理論來減少產品失效的機率。失效機率會影響廠商在產品保用證上的決策[7]。
事件A的機率一般會寫成P(A)、p(A)或Pr(A)[8]。機率的數學概念可延伸到無限的樣本空間甚至不可數的樣本空間,但需要用上機率測度的概念。
機率的公理化定義將機率的相關範疇從具體問題中抽象出來,從而可以在數學意義下考察機率的相關概念和由之引出的問題。以下給出機率的公理化定義:
設隨機事件的樣本空間為Ω,Ω的一個子集稱為事件。對於Ω中的每一個事件A,都有實函數P(A),滿足:
任意一個滿足上述條件的函數P都可以作為樣本空間Ω的機率函數,稱函數值P(A)為Ω中事件A的機率。
一個事件的機率值通常以一個介於0到1的實數表示。一個不可能事件其機率值為0,而確定事件其機率值則為1。 但反推並不一定成立,也就是說機率值為0的事件不表示它就是一個不可能事件,同理,機率值為1的事件不表示它就一定發生。例如,在一個正方形內作一條線段,由於這條線段的面積是0,所以一個此正方形內的點落在這條線段上的機率就是0,但它並不是不可能事件。
實際上大多數的機率值都是介於0與1之間的數,這個數示代表事件在'不可能發生'與'確定發生'之間的相對位置。事件的機率值越接近1,事件發生的機會就越高。
舉例來說,假設兩個事件有相同的發生機率,就像被拋擲而落地的銅板不是正面向上就是反面向上一樣,但是我們不能說:每2次拋擲會出現1次,只能說事件發生的機率是平均每2次出現一次,或說是 "50%" 或 "1/2"。
機率分布函數是一個把機率分配給事件或者命題的函數。對於任何一個事件或者命題,總有很多分配機率的方法,所以選擇不同的分布等同於對一個問題中的事件或者命題作出不同的假設。
分布還可分為「離散」和「連續」的。
事件 | 機率 |
---|---|
A | |
非A | |
A或B | |
A和B | |
B的情況下A的機率 |
在牛頓力學的概念中,決定論的世界中,若所有條件都是已知,都沒有任何機率性的成份在內(拉普拉斯的惡魔),不過有可能一些系統對初始條件敏感,敏感程度甚至到超過可能量測的範圍。以俄羅斯輪盤為例,若手的施力,出力的時間等資訊已知,輪盤最後停止的位置是可以計算而得的,不過此時需要知道輪盤的慣量及摩擦係數,球的質量、光滑度及圓度,出力過程中手速度的變化等。此時,相較於用牛頓力學的方式分析,機率性的描述可能更適合描述重覆玩數次俄羅斯輪盤的結果。科學家發現在氣體動力論中也有類似的情形,系統理論上是確定的,但因為氣體分子個數約和阿伏伽德羅常數(≈×1023 mol−1)量級相當,因此也只能用機率性的描述。 6.022
在描述量子理論時一定會用到機率論[9]。二十世紀初期,物理學界有一個革命性發現,所有次原子層級的物理過程有隨機性,依循量子力學。物理的波函數是確定的,是數個狀態的疊加,但根據哥本哈根詮釋,觀察會帶來波函數塌縮,因此只能觀察到其中一個狀態。不過這種缺乏決定論的觀點未受到所有人的同意。愛因斯坦在給馬克斯·玻恩的信上提到「我相信上帝不會玩骰子。」[10]。而發現波函數的埃爾溫·薛丁格認為量子力學只是內部決定論狀態的統計近似[11]。在近代的詮釋中,量子退相干有相當的機率性質。
機率論在19世紀30年代就已傳入中國,長期以來,其譯名並無統一,曾用譯名有「決疑」、「可遇率」、「或是率」、「或然率」、「適遇率」、「公算」、「幾率」、「機率」、「或然率」、「概率」等,也有借用日本漢字詞作「確率」的。[12]1935年,國立編譯館將譯名範圍縮小到「概率」和「幾率」兩個。[12]其中「幾率」的「幾」表示「接近」,和「幾乎」的「幾」類似。[13]1964年,中國科學院編寫的《數學名詞補編》確定使用「概率」作為正式譯名。[12]大陸的物理學界在一段時間內仍然沿用「機率」,但於1988年的《物理學名詞》中採用了與數學界一致的「概率」,「最可幾的」相應地改稱「最概然的」。[14]而現代台灣則選用了「機率」作為標準譯名。一說「機率」的由來是因為「幾率」的「幾」含義被誤認為是「機會」(英語為opportunity)的意思,進而誤寫成「機率」,但實際上「機率」也是早期譯名之一,例如「萬有文庫」收錄的《統計學原理》(Elements of Statistics,鮑萊著,李植泉譯)就使用了「機率」的譯法。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.