数学 中,维纳过程 (英语:Wiener process )是一种连续时间随机过程 ,得名于诺伯特·维纳 。由于与物理学 中的布朗运动 有密切关系,也常被称为“布朗运动过程 ”或简称为布朗运动 。维纳过程是莱维过程 (指左极限右连续 的平稳 独立 增量随机过程)中最有名的一类,在纯数学 、应用数学 、经济学 与物理学 中都有重要应用。
一维的维纳过程的一个路径
三维的维纳过程的一个路径
维纳过程的地位在纯数学中与在应用数学中同等重要。在纯数学中,维纳过程导致了对连续鞅 理论的研究,是刻画一系列重要的复杂过程的基本工具。它在随机分析 、扩散过程 和位势论 领域的研究中是不可或缺的。在应用数学中,维纳过程可以描述高斯 白噪声 的积分形式。在电子工程 中,维纳过程是建立噪音的数学模型的重要部分。控制论 中,维纳过程可以用来表示不可知因素。
维纳过程和物理学中的布朗运动 有密切关系。布朗运动是指悬浮在液体中的花粉微小颗粒所进行的无休止随机运动。维纳运动也可以描述由福克-普朗克方程 和郎之万方程 确定的其他随机运动。维纳过程构成了量子力学 的严谨路径积分表述 的基础(根据费曼-卡茨公式 ,薛定谔方程 的解可以用维纳过程表示)。金融数学 中,维纳过程可以用于描述期权定价模型如布莱克-斯科尔斯模型 。
对任意的正实数
t
{\displaystyle t}
,一维维纳过程在
t
{\displaystyle t}
时刻是一个随机变量,它的概率密度函数 是:
f
W
t
(
x
)
=
1
2
π
t
e
−
x
2
/
2
t
.
{\displaystyle f_{W_{t}}(x)={\frac {1}{\sqrt {2\pi t}}}e^{-x^{2}/{2t}}.}
这是因为按照维纳过程的定义,当
s
=
0
{\displaystyle s=0}
时,可以推出
W
t
{\displaystyle W_{t}}
的分布:
W
t
=
W
t
−
W
0
∼
N
(
0
,
t
)
.
{\displaystyle W_{t}=W_{t}-W_{0}\sim {\mathcal {N}}(0,t).}
它的数学期望是零:
E
(
W
t
)
=
0.
{\displaystyle \mathbb {E} (W_{t})=0.}
它的方差 是
t
{\displaystyle t}
:
Var
(
W
t
)
=
E
(
W
t
2
)
−
E
2
(
W
t
)
=
E
(
W
t
2
)
−
0
=
E
(
W
t
2
)
=
t
.
{\displaystyle \operatorname {Var} (W_{t})=\mathbb {E} (W_{t}^{2})-\mathbb {E} ^{2}(W_{t})=\mathbb {E} (W_{t}^{2})-0=\mathbb {E} (W_{t}^{2})=t.}
在维纳过程的独立增量定义中,令
t
2
=
t
{\displaystyle t_{2}=t}
,
s
2
=
t
1
=
s
<
t
{\displaystyle s_{2}=t_{1}=s<t}
,
s
1
=
0
{\displaystyle s_{1}=0}
,那么
W
s
=
W
t
1
−
W
s
1
∼
N
(
0
,
s
)
{\displaystyle W_{s}=W_{t_{1}}-W_{s_{1}}\sim {\mathcal {N}}(0,s)}
和
W
t
−
W
s
=
W
t
2
−
W
s
2
∼
N
(
0
,
t
−
s
)
{\displaystyle W_{t}-W_{s}=W_{t_{2}}-W_{s_{2}}\sim {\mathcal {N}}(0,t-s)}
是相互独立的随机变量,并且
cov
(
W
s
,
W
t
)
=
E
[
(
W
s
−
E
(
W
s
)
)
⋅
(
W
t
−
E
(
W
t
)
)
]
=
E
(
W
s
⋅
W
t
)
=
E
[
W
s
(
W
t
−
W
s
)
]
+
E
(
W
s
2
)
=
E
(
W
s
)
E
(
W
t
−
W
s
)
+
s
=
s
.
{\displaystyle \operatorname {cov} (W_{s},W_{t})=\mathbb {E} \left[(W_{s}-\mathbb {E} (W_{s}))\cdot (W_{t}-\mathbb {E} (W_{t}))\right]=\mathbb {E} (W_{s}\cdot W_{t})=\mathbb {E} [W_{s}\left(W_{t}-W_{s}\right)]+\mathbb {E} (W_{s}^{2})=\mathbb {E} (W_{s})\mathbb {E} \left(W_{t}-W_{s}\right)+s=s\ \ .}
所以两个不同时刻
0
⩽
s
,
t
{\displaystyle 0\leqslant s,t}
,
W
t
{\displaystyle W_{t}}
与
W
s
{\displaystyle W_{s}}
的协方差 和相关系数 是:
cov
(
W
s
,
W
t
)
=
min
(
s
,
t
)
,
corr
(
W
s
,
W
t
)
=
c
o
v
(
W
s
,
W
t
)
σ
W
s
σ
W
t
=
min
(
s
,
t
)
s
t
=
min
(
s
,
t
)
max
(
s
,
t
)
.
{\displaystyle \operatorname {cov} (W_{s},W_{t})=\min(s,t)\,,\qquad \quad \operatorname {corr} (W_{s},W_{t})={\mathrm {cov} (W_{s},W_{t}) \over \sigma _{W_{s}}\sigma _{W_{t}}}={\frac {\min(s,t)}{\sqrt {st}}}={\sqrt {\frac {\min(s,t)}{\max(s,t)}}}\,.}
维纳过程中的即时最大值
M
t
=
max
0
≤
s
≤
t
W
s
{\displaystyle M_{t}=\max _{0\leq s\leq t}W_{s}}
与
W
t
{\displaystyle W_{t}}
的联合概率分布是:
f
M
t
,
W
t
(
m
,
w
)
=
2
(
2
m
−
w
)
t
2
π
t
e
−
(
2
m
−
w
)
2
2
t
,
m
≥
0
,
w
≤
m
{\displaystyle f_{M_{t},W_{t}}(m,w)={\frac {2(2m-w)}{t{\sqrt {2\pi t}}}}e^{-{\frac {(2m-w)^{2}}{2t}}},m\geq 0,w\leq m}
而即时最大值的分布
f
M
t
{\displaystyle f_{M_{t}}}
是对
−
∞
<
w
≤
m
{\displaystyle -\infty <w\leq m}
的积分:
f
M
t
(
m
)
=
∫
−
∞
m
f
M
t
,
W
t
(
m
,
w
)
d
w
=
∫
−
∞
m
2
(
2
m
−
w
)
t
2
π
t
e
−
(
2
m
−
w
)
2
2
t
d
w
=
2
π
t
e
−
m
2
2
t
{\displaystyle f_{M_{t}}(m)=\int _{-\infty }^{m}f_{M_{t},W_{t}}(m,w)\,dw=\int _{-\infty }^{m}{\frac {2(2m-w)}{t{\sqrt {2\pi t}}}}e^{-{\frac {(2m-w)^{2}}{2t}}}\,dw={\sqrt {\frac {2}{\pi t}}}e^{\frac {-m^{2}}{2t}}}
即时最大值的数学期望是[ 3] :114 :
E
M
t
=
∫
0
∞
m
f
M
t
(
m
)
d
m
=
∫
0
∞
m
2
π
t
e
−
m
2
2
t
d
m
=
2
t
π
.
{\displaystyle \mathbb {E} M_{t}=\int _{0}^{\infty }mf_{M_{t}}(m)\,dm=\int _{0}^{\infty }m{\sqrt {\frac {2}{\pi t}}}e^{\frac {-m^{2}}{2t}}\,dm={\sqrt {\frac {2t}{\pi }}}.}
由于维纳过程上下对称,即时最小值显然是即时最大值的相反数 。
维纳过程具有马尔可夫性质 ,也就是说,在任意一点之后的走势仅仅和这一点的取值相关,而与之前的取值无关。也就是说,对任何的有界连续函数
ϕ
{\displaystyle \phi }
,
E
[
ϕ
(
W
s
,
s
⩾
t
)
|
F
t
]
=
E
[
ϕ
(
W
s
,
s
⩾
t
)
|
W
t
]
{\displaystyle \mathbb {E} [\phi (W_{s},s\geqslant t)|{\mathcal {F}}_{t}]=\mathbb {E} [\phi (W_{s},s\geqslant t)|W_{t}]}
因此维纳过程具有时间平移不变性:随机过程
(
V
t
)
t
⩾
0
:
V
t
=
W
t
0
+
t
−
W
t
0
{\displaystyle \left(V_{t}\right)_{t\geqslant 0}:\,\,V_{t}=W_{t_{0}+t}-W_{t_{0}}}
也是一个维纳过程。不仅如此,维纳过程还满足强马尔可夫性质:对任意的有限停时
τ
{\displaystyle \tau }
,随机变量
B
t
=
W
τ
+
t
−
W
τ
{\displaystyle B_{t}=W_{\tau +t}-W_{\tau }}
独立于滤波
F
τ
{\displaystyle {\mathcal {F}}_{\tau }}
。也就是说,对任何的有界连续函数
ϕ
{\displaystyle \phi }
,
E
[
ϕ
(
W
s
,
s
⩾
τ
)
|
F
τ
]
=
E
[
ϕ
(
W
s
,
s
⩾
τ
)
|
W
τ
]
.
{\displaystyle \mathbb {E} [\phi (W_{s},s\geqslant \tau )|{\mathcal {F}}_{\tau }]=\mathbb {E} [\phi (W_{s},s\geqslant \tau )|W_{\tau }].}
维纳过程的强马尔可夫性质,说明即便给定的时间不是定时而是一个停时,维纳过程在停时之后的走势仍然与之前无关。所以,将停时之后的维纳过程上下反转,仍然会是一个维纳过程。用数学语言来说,就是:给定一个停时
τ
{\displaystyle \tau }
之后,随机变量:
B
t
=
W
t
1
t
⩽
τ
+
(
2
W
τ
−
W
t
)
1
t
>
τ
{\displaystyle B_{t}=W_{t}\mathbf {1} _{t\leqslant \tau }+\left(2W_{\tau }-W_{t}\right)\mathbf {1} _{t>\tau }}
也是一个维纳过程。这个性质也称为维纳过程的反射原理。
作为推论,可以建立即时最大值
M
t
=
max
0
≤
s
≤
t
W
s
{\displaystyle M_{t}=\max _{0\leq s\leq t}W_{s}}
与
W
t
{\displaystyle W_{t}}
的另一种关系。设有正实数
a
>
0
{\displaystyle a>0}
停时
τ
a
=
inf
{
t
>
0
,
W
t
>
a
}
{\displaystyle \tau _{a}=\inf\{t>0,\,W_{t}>a\}}
,那么
{
τ
a
⩽
t
}
=
{
M
t
⩾
a
}
{\displaystyle \{\tau _{a}\leqslant t\}=\{M_{t}\geqslant a\}}
。运用反射原理可以证明,
P
(
M
t
⩾
a
)
=
2
P
(
W
t
⩾
a
)
=
P
(
|
W
t
|
⩾
a
)
{\displaystyle \mathbb {P} \left(M_{t}\geqslant a\right)=2\mathbb {P} \left(W_{t}\geqslant a\right)=\mathbb {P} \left(|W_{t}|\geqslant a\right)}
。更一般地,设有
a
>
b
⩾
0
{\displaystyle a>b\geqslant 0}
,则
P
(
W
t
⩽
b
,
M
t
⩾
a
)
=
P
(
W
t
⩾
2
a
−
b
)
{\displaystyle \mathbb {P} \left(W_{t}\leqslant b,\,M_{t}\geqslant a\right)=\mathbb {P} \left(W_{t}\geqslant 2a-b\right)}
。