在几何学中,维面(Facet)又称为超面(hyperface[1])是指几何形状的组成元素中,比该几何形状所在维度少一个维度的元素[5]。也是任何多胞形的边界。而若在维面前加一个整数则代表几何形状的组成元素中,维度为该数的元素,例如在立方体中2维面(2-Face)是指立方体的正方形面。一般来说,维面(Facet)不应与面(Face)混淆[6][7]。一般的多胞形皆是以维面的数量命名,例如六边形的维面是边,其共有六条边因此称六边形、八面体的维面是面,其共有八个面因此称八面体。
维面
在三维几何中,多面体的维面是指所有顶点都是多面体顶点的多边形面。在部分几何结构中有可能存在不是维面的面[6][7]。而维面重组,或称刻面是指找到新的维面形成新的多面体的过程,这个过程有时可以称作星形化,并可以套用到更高维度的几何结构。
在多面体组合学和一般的多胞形理论中,n维多胞形中的n − 1维元素称为维面。维面也称为(n − 1)维面、(n − 1)面或(n − 1)-面。而在在三维几何学通常称为面而不是维面。[8]
在单纯复形中,单纯复形的维面是一个单纯复形中最大的单纯形,且这个单纯形不是面也不是其他单纯复形的单纯形。[9]对于单纯多胞形的边界复合体,此定义与多面体组合学一致。
多维面
在几何学中,维面一词前面若加一个整数,则代表一几何结构中维度为该整数的元素,此概念不应与维面混淆。例如k维面代表几何结构中维度为k的元素,又称k面、k-面或k维元素而在更高维度中,有时会称为k维胞,这一用法并未限定元素的所属维度。[2][3][4]例如立方体的多维面包括了空多胞形(负一维面)、顶点(零维面)、边(一维面)、正方形(二维面,一般称面)和其本身(三维面,一般称体)。正式地,对于一个多胞形P,多维面的定义是与一个“不与P内部相交的封闭半空间”的相交几何结构(如交点、交线或交面等)[2][4]。多胞形中的多维面集合中同时也包含了多胞形本身和空多胞形。[3][4]
在抽象几何学中,负一维面是多胞形中的元素集合中,不存在任何元素的子集,[10]对应到集合论中即为空集[11]且所有多胞形都含有空多胞形[12]。这种面通常称为多胞形的极小面(least face)[13]、核维面或零化度(nullity[14])。
零维面为几何结构中的零维元素,即顶点,通常由几何结构的元素相交于点上形成。[15]
一维面为几何结构中的一维元素,即边或棱,通常由二个或多个几何结构的元素交于一线而形成。[16]
二维面为几何结构中的二维元素,通常会省略前面的维度直接称面。[17]
若一个多胞形其维度就是n维,则n维面为该多胞形本身,通常称为体,而在抽象几何学中,也称为极大面(Greatest Face)[13],并且与极小面合称非法面(Improper Face)。[21]
若一个多胞形其维度就是n维,则其(n-1)维的元素称为维面(Facet)[5]。
若一个多胞形其维度就是n维,则其(n-2)维的元素称为维脊(Ridge)[22]。
若一个多胞形其维度就是n维,则其(n-3)维的元素称为维峰(Peak)[23]。
参见
参考文献
外部链接
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.