DNA计算DNA computing,或译DNA运算)是一个新出现的交叉学门领域,利用DNA生物化学以及分子生物学原理,而非传统上以为基础的电子计算技术。该领域涉及DNA计算的理论、实验和应用。虽然该领域最初始于 1994 年Len Adleman的计算应用演示,但现在已扩展到存储技术开发等其他几个方面、[1][2][3]纳米级成像模式、[4][5][6]合成控制器与反应网络、[7][8][9][10]等。

生物兼容计算设备: 脱氧核糖核酸(DNA)

历史

DNA运算最先由南加州大学伦纳德·阿德曼在1994年实现。[11]Adleman演示了一种将DNA应用于解决七点 哈密顿路径问题概念验证方法。自Adleman的实验以后,学界又取得了许多进展,多种图灵机被证明是可行的。[12] [13]

尽管一开始的研究热点集中在解决P/NP问题,但人们旋即意识到此类问题并不是DNA运算的最佳应用场合,以致有多种意见要求寻找杀手级应用。1997年,计算机学家 Mitsunori Ogihara和生物学家Animesh Ray一道提出了一种组合逻辑电路的评价方法,并描绘了实现方法。[14][15] 2002年,来自Weizmann Institute of Science的研究者公开了一种由DNA分子和酶,而不是硅组成的计算机器。[16] 2004年3月28日,Weizmann InstituteEhud Shapiro, Yaakov Benenson, Binyamin Gil, Uri Ben-Dor,和Rivka Adar在自然杂志上发表文章称,他们实现了一种整合了输入输出的DNA计算机,理论上可以实现细胞内的癌症诊断,并释放抗癌药物。DNA分子由四种碱基组成,通过酶改变他们的排列可以进行计算。[17][18] 2004年,英国科学家成功的在一小团DNA中存储了大量文件,并成功读取。[19]

2003 年,Reif's group 首次展示了一种基于 DNA 的行走器,这种行走器可以沿着类似于线性跟随机器人的轨道行走。他们利用分子生物学作为行走器的能量来源。自首次展示以来,已经有多种基于 DNA 的步行器被展示出来。

优点和缺点

DNA 计算机的处理速度较慢(响应时间以分钟、小时或天计算,而不是以毫秒计算),但它可以进行大量的多重并行计算。这使得系统进行复杂计算所需的时间与进行简单计算所需的时间相近。之所以能做到这一点,是因为数百万或数十亿分子能同时相互影响。不过,分析 DNA 计算机给出的答案要比数字计算机难得多。

参见

外部链接

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.