在机器学习和统计学中,特征选择(英语:feature selection)也被称为变量选择、属性选择 或变量子集选择 。它是指:为了构建模型而选择相关特征(即属性、指标)子集的过程。使用特征选择技术有三个原因:
要使用特征选择技术的关键假设是:训练数据包含许多冗余 或无关 的特征,因而移除这些特征并不会导致丢失信息。[2] 冗余 或无关 特征是两个不同的概念。如果一个特征本身有用,但如果这个特征与另一个有用特征强相关,且那个特征也出现在数据中,那么这个特征可能是冗余的。[3]
特征选择技术与特征提取有所不同。特征提取是从原有特征的功能中创造新的特征,而特征选择则只返回原有特征中的子集。 特征选择技术的常常用于许多特征但样本(即数据点)相对较少的领域。特征选择应用的典型用例包括:解析书面文本和微阵列数据,这些场景下特征成千上万,但样本只有几十到几百个。
介绍
特征选择算法可以被视为搜索技术和评价指标的结合。前者提供候选的新特征子集,后者为不同的特征子集打分。 最简单的算法是测试每个特征子集,找到究竟哪个子集的错误率最低。这种算法需要穷举搜索空间,难以算完所有的特征集,只能涵盖很少一部分特征子集。 选择何种评价指标很大程度上影响了算法。而且,通过选择不同的评价指标,可以把特征选择算法分为三类:包装类、过滤类和嵌入类方法[3]
- 包装类方法使用预测模型给特征子集打分。每个新子集都被用来训练一个模型,然后用验证数据集来测试。通过计算验证数据集上的错误次数(即模型的错误率)给特征子集评分。由于包装类方法为每个特征子集训练一个新模型,所以计算量很大。不过,这类方法往往能为特定类型的模型找到性能最好的特征集。
- 过滤类方法采用代理指标,而不根据特征子集的错误率计分。所选的指标算得快,但仍然能估算出特征集好不好用。常用指标包括互信息[3]、逐点互信息[4]、皮尔逊积矩相关系数、每种分类/特征的组合的帧间/帧内类距离或显著性测试评分。[4][5] 过滤类方法计算量一般比包装类小,但这类方法找到的特征子集不能为特定类型的预测模型调校。由于缺少调校,过滤类方法所选取的特征集会比包装类选取的特征集更为通用,往往会导致比包装类的预测性能更为低下。不过,由于特征集不包含对预测模型的假设,更有利于暴露特征之间的关系。许多过滤类方法提供特征排名,而非显式提供特征子集。要从特征列表的哪个点切掉特征,得靠交叉验证来决定。过滤类方法也常常用于包装方法的预处理步骤,以便在问题太复杂时依然可以用包装方法。
- 嵌入类方法包括了所有构建模型过程中用到的特征选择技术。这类方法的典范是构建线性模型的LASSO方法。该方法给回归系数加入了L1惩罚,导致其中的许多参数趋于零。任何回归系数不为零的特征都会被LASSO算法“选中”。LASSO的改良算法有Bolasso[6]和FeaLect[7]。Bolasso改进了样本的初始过程。FeaLect根据回归系数组合分析给所有特征打分。 另外一个流行的做法是递归特征消除(Recursive Feature Elimination)算法,通常用于支持向量机,通过反复构建同一个模型移除低权重的特征。这些方法的计算复杂度往往在过滤类和包装类之间。
传统的统计学中,特征选择的最普遍的形式是逐步回归,这是一个包装类技术。它属于贪心算法,每一轮添加该轮最优的特征或者删除最差的特征。主要的调控因素是决定何时停止算法。在机器学习领域,这个时间点通常通过交叉验证找出。在统计学中,某些条件已经优化。因而会导致嵌套引发问题。此外,还有更健壮的方法,如分支和约束和分段线性网络。
参见
参考文献
扩展阅读
外部链接
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.