Loading AI tools
推論統計學中用於檢定統計資料的一種方法 来自维基百科,自由的百科全书
假设检验(英语:hypothesis testing)是推论统计中用于检验现有数据是否足以支持特定假设的方法。[1]一旦能估计未知参数,就会希望根据结果对未知的真正参数值做出适当的推论。
此条目需要精通或熟悉数学的编者参与及协助编辑。 (2012年12月18日) |
欲检验统计上假设的正确性的为零假设(Null hypothesis,记为),零假设通常由研究者决定,反映研究者对未知参数的看法。相对于零假设的其他有关参数之论述是备择假设(Alternative hypothesis,记为或),它通常反应了执行检验的研究者对参数可能数值的另一种(对立的)看法(换句话说,备择假设通常才是研究者最想证明的)。
假设检验的过程,可以用法庭的审理来说明。先想像现在法庭上有一名被告,假设该被告是清白的,而检察官必须要提出足够的证据去证明被告的确有罪。
在证明被告有罪前,被告是被假设为清白的。
而检察官提出的证据,是否足以确定该被告有罪,则要经过检验。这样子的检验过程就相当于用T检验或Z检验去检视研究者所搜集到的统计资料。
在统计学的文献中,假设检验发挥了重要作用。假设检验大致有如下步骤:
要注意的是一般不会将检验结果称作“接受”零假设,而是因没有显著证据证明零假设为非,所以“不拒绝”零假设。
女士品茶是一个有关假设检验的著名例子[2]。统计学家费希尔的一个女同事,也是藻类学家的缪丽·布里斯托尔,她声称可以判断在奶茶中是先加入茶还是先加入牛奶。费希尔提议给她八杯奶茶。缪丽已知其中四杯先加茶,四杯先加牛奶,但随机排列,而她要说出这八杯奶茶中,哪些先加牛奶,哪些先加茶,检验统计量是确认正确的次数。零假设是她无法判断奶茶中的茶先加入还是牛奶先加入,备择假设为她有此能力。
若单纯以概率考虑(即缪丽没有判断的能力)下,八杯都正确的概率为1/70(因为8选4的组合数是70),约1.43%,因此“拒绝域”为八杯的结果都正确。而测试结果为缪丽八杯的结果都正确[3],在统计上是相当显著的的结果。也就是说,几乎可以排除她只是恰好猜对结果的可能。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.