如果一个实数 x {\displaystyle x} 满足,对任意正整数 n {\displaystyle n} ,存在整数 p , q {\displaystyle p,q} ,其中 q > 1 {\displaystyle q>1} 有 0 < | x − p q | < 1 q n {\displaystyle 0<\left|x-{\frac {p}{q}}\right|<{\frac {1}{q^{n}}}} 就把 x {\displaystyle x} 叫做刘维尔数。 法国数学家刘维尔在1844年证明了所有刘维尔数都是超越数[1],第一次说明了超越数的存在。 容易证明,刘维尔数一定是无理数。若不然,则 x = c d , ( c , d ∈ Z , d > 0 ) {\displaystyle x={\frac {c}{d}},(c,d\in \mathbb {Z} ,d>0)} 。 取足够大的 n {\displaystyle n} 使 2 n − 1 > d {\displaystyle {2^{n-1}}>d} ,在 c d ≠ p q {\displaystyle {\frac {c}{d}}\neq {\frac {p}{q}}} 时有 | x − p q | = | c d − p q | = | c q − d p d q | ≥ 1 d q > 1 2 n − 1 q ≥ 1 q n {\displaystyle \left|x-{\frac {p}{q}}\right|=\left|{\frac {c}{d}}-{\frac {p}{q}}\right|=\left|{\frac {cq-dp}{dq}}\right|\geq {\frac {1}{dq}}>{\frac {1}{2^{n-1}q}}\geq {\frac {1}{q^{n}}}} 与定义矛盾。 即 c = ∑ j = 1 ∞ 10 − j ! = 0.110001000000000000000001000 … {\displaystyle c=\sum _{j=1}^{\infty }10^{-j!}=0.110001000000000000000001000\ldots } 这是一个刘维尔数。取 p n = ∑ j = 1 n 10 n ! − j ! , q n = 10 n ! {\displaystyle p_{n}=\sum _{j=1}^{n}10^{n!-j!},\quad q_{n}=10^{n!}} 那么对于所有正整数 n {\displaystyle n} | c − p n q n | = ∑ j = n + 1 ∞ 10 − j ! = 10 − ( n + 1 ) ! + 10 − ( n + 2 ) ! + ⋯ < 10 ⋅ 10 − ( n + 1 ) ! ≤ ( 10 − n ! ) n = 1 q n n . {\displaystyle \left|c-{\frac {p_{n}}{q_{n}}}\right|=\sum _{j=n+1}^{\infty }10^{-j!}=10^{-(n+1)!}+10^{-(n+2)!}+{}\cdots <10\cdot 10^{-(n+1)!}\leq {\Big (}10^{-n!}{\Big )}^{n}={\frac {1}{{q_{n}}^{n}}}.} 所有刘维尔数都是超越数,但反过来并不对。例如,著名的e和 π {\displaystyle \pi } 就不是刘维尔数。实际上,有不可数多的超越数都不是刘维尔数。 证明 刘维尔定理:若无理数 α {\displaystyle \alpha } 是代数数,即整系数 n {\displaystyle n} 次多项式 f {\displaystyle f} 的根,那么存在实数 A > 0 {\displaystyle A>0} ,对于所有 p , q ∈ Z , q > 0 {\displaystyle p,q\in \mathbb {Z} ,q>0} 有 | α − p q | > A q n {\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert >{\frac {A}{q^{n}}}} 证明:令 M = max { | f ′ ( x ) | | x ∈ [ α − 1 , α + 1 ] } {\displaystyle M=\max \left\{\left|f'(x)\right||x\in \left[\alpha -1,\alpha +1\right]\right\}} ,记 f {\displaystyle f} 的其它的不重复的根为 α 1 , α 2 , . . . , α m {\displaystyle \alpha _{1},\alpha _{2},...,\alpha _{m}} ,取这样的A 0 < A < min ( 1 , 1 M , | α − α 1 | , | α − α 2 | , … , | α − α m | ) {\displaystyle 0<A<\min \left(1,{\frac {1}{M}},\left\vert \alpha -\alpha _{1}\right\vert ,\left\vert \alpha -\alpha _{2}\right\vert ,\ldots ,\left\vert \alpha -\alpha _{m}\right\vert \right)} 如果存在使定理不成立的 p , q {\displaystyle p,q} ,就有 | α − p q | ≤ A q n ≤ A < min ( 1 , 1 M , | α − α 1 | , | α − α 2 | , … , | α − α m | ) {\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert \leq {\frac {A}{q^{n}}}\leq A<\min \left(1,{\frac {1}{M}},\left\vert \alpha -\alpha _{1}\right\vert ,\left\vert \alpha -\alpha _{2}\right\vert ,\ldots ,\left\vert \alpha -\alpha _{m}\right\vert \right)} 那么, p q ∈ [ α − 1 , α + 1 ] ∧ p q ∉ { α 1 , α 2 , . . . , α m } {\displaystyle {\frac {p}{q}}\in \left[\alpha -1,\alpha +1\right]\land {\frac {p}{q}}\notin \left\{\alpha _{1},\alpha _{2},...,\alpha _{m}\right\}} 据拉格朗日中值定理,存在 α {\displaystyle \alpha } 和 p q {\displaystyle {\frac {p}{q}}} 之间的 x 0 {\displaystyle x_{0}} 使得 f ( α ) − f ( p / q ) = ( α − p / q ) ⋅ f ′ ( x 0 ) {\displaystyle f(\alpha )-f(p/q)=(\alpha -p/q)\cdot f'(x_{0})} 有 | ( α − p / q ) | = | f ( α ) − f ( p / q ) | / | f ′ ( x 0 ) | = | f ( p / q ) / f ′ ( x 0 ) | {\displaystyle \left\vert (\alpha -p/q)\right\vert =\left\vert f(\alpha )-f(p/q)\right\vert /\left\vert f'(x_{0})\right\vert =\left\vert f(p/q)/f'(x_{0})\right\vert \,} f {\displaystyle f} 是多项式,所以 | f ( p / q ) | = | ∑ i = 0 n c i p i q − i | = | ∑ i = 0 n c i p i q n − i | q n ≥ 1 q n {\displaystyle \left\vert f(p/q)\right\vert =\left\vert \sum _{i=0}^{n}c_{i}p^{i}q^{-i}\right\vert ={\frac {\left\vert \sum _{i=0}^{n}c_{i}p^{i}q^{n-i}\right\vert }{q^{n}}}\geq {\frac {1}{q^{n}}}} 由于 | f ′ ( x 0 ) | ≤ M {\displaystyle \left|f'(x_{0})\right|\leq M} 和 1 / M > A {\displaystyle 1/M>A} | α − p / q | = | f ( p / q ) / f ′ ( x 0 ) | ≥ 1 / ( M q n ) > A / q n ≥ | α − p / q | {\displaystyle \left\vert \alpha -p/q\right\vert =\left\vert f(p/q)/f'(x_{0})\right\vert \geq 1/(Mq^{n})>A/q^{n}\geq \left\vert \alpha -p/q\right\vert } 矛盾。 证明刘维尔数是超越数:有刘维尔数 x {\displaystyle x} ,它是无理数,如果它是代数数则 ∃ n ∈ Z , A > 0 ∀ p , q ( | x − p q | > A q n ) {\displaystyle \exists n\in \mathbb {Z} ,A>0\forall p,q\left(\left\vert x-{\frac {p}{q}}\right\vert >{\frac {A}{q^{n}}}\right)} 取满足 1 2 r ≤ A {\displaystyle {\frac {1}{2^{r}}}\leq A} 的正整数 r {\displaystyle r} ,并令 m = r + n {\displaystyle m=r+n} ,存在整数 a , b {\displaystyle a,b} 其中 b > 1 {\displaystyle b>1} 有 | x − a b | < 1 b m = 1 b r + n = 1 b r b n ≤ 1 2 r 1 b n ≤ A b n {\displaystyle \left|x-{\frac {a}{b}}\right|<{\frac {1}{b^{m}}}={\frac {1}{b^{r+n}}}={\frac {1}{b^{r}b^{n}}}\leq {\frac {1}{2^{r}}}{\frac {1}{b^{n}}}\leq {\frac {A}{b^{n}}}} 与上式矛盾。故刘维尔数是超越数。 [1]Liouville, Joseph. Mémoires et communications. Comptes rendus de l'Académie des Sciences. [2023-01-02]. (原始内容存档于2023-02-21). 丢番图逼近 The Beginning of Transcendental Numbers (页面存档备份,存于互联网档案馆)Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.